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Pattern Recognition.
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Recognition process.

= Recognition process relates input signal to the stored
concepts about the object.
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Definitions.

= Similar objects produce similar signals.
= Class is a set of similar objects.

= Patterns are collections of signals originating
from similar objects.

= Pattern recognition is the process of identifying
signal as originating from particular class of
objects.



o

Center for Unified Biometrics and Sensors

VR A

University at Buffale The Stare University of New York =
http://www.cubs.buffalo.ed .

Pattern recognition steps.
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Training of the recognizer.
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Types of Training
e Supervised training — uses training samples with

associated class labels.
-Character images with corresponding labels.

« Unsupervised training — training samples are not labeled.

-Character images: cluster images and assign labels to clusters
later.

- Reinforcement training — feedback is provided during
recognition to adjust system parameters.
- Use word images to train character recognizer.

, Ranking
Word —— Segmentation | Character | combine | | 4 jexicon
Image recognition results words

~_

Adjust parameters
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Template Matching(1)

Image Is converted into 12x12 bitmap.
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Template Matching(2)

Bitmap is represented by 12x12-matrix or by 144-vector
with O and 1 coordinates.

0 0 01O 0 0 1 1 0 0 0 0
0 0 01O 0 1 1 1 0 0 0 0
0 0 01]o0 0 1 0 1 1 0 0 0
0 0 01]o0 1 1 0 1 1 0 0 0
0 0 01O 1 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0
0 1 1 (0 0 0 0 0 0 1 1 0
0 1 110 0 0 0 0 0 0 1 1
1 1 01]o0 0 0 0 0 0 0 1 1
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Training samples — templates with corresponding class:
t, ={(0,0,0011,...0),'A'}

t, ={(0,00,0,01...0), A’}

N

Template of the image to be recognized:
T={(0,0,0011...0),'A'}

Algorithm:
1.Find t, ,sothatt. =T.

2.Assign image to thesameclass as t..
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Template Matching(4)

2144

If fewer templates are stored, some images might not

be recognized.

Improvements

N

Use fewer
features

Use better
matching
function
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Features

e Features are numerically expressed properties of
the signal.

* The set of features used for pattern recognition is
called feature vector. The number of used features is
the dimensionality of the feature vector.

* n-dimensional feature vectors can be represented
as points in n-dimensional feature space.

Class 1 , Classl
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Guidelines for Features

- Use fewer features Iif possible

Effects:

— Reducing number of required training samples.
— Improving quality of recognizing function.

e Use features that differentiate classes well

Example for character recognition:
— Good features: elongation of the image, presence of
large loops or strokes.
— Bad features: number of black pixels, number of
connected components.
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Detween feature vectors

Distance

e Instead of finding template exactly matching input
template look at how close feature vectors are.
» Nearest neighbor classification algorithm:

1. Find template closest to the input pattern.
2. Classify pattern to the same class as closest

template
Class 1
Class 2
o @)
T
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distances in feature
space.
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Figure 0.9. Norms as similarity measures and their r-hyperballs with (a) Euclidean Norm, (b) City
Block Norm, (c) Supremum Norm, and (d) Mahalanobis Distance.
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K-nearest neighbor classifier

Modification of nearest neighbor classifier: use k
nearest neighbors instead of 1 to classify pattern.
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Clustering

Reduce the number of stored templates — keep
only cluster centers.

Class 1
A Class 2
O O + + Clustering algorithms
@/ —+ -+ reveal the structure of
o + —+ classesin fea?ure space
o © D -+ and are u_sed n
a —+ unsupervised training.
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Statistical pattern recognition

*Treat patterns (feature vectors) as observations of

random variable (vector).
« Random variable is defined by the probability density

function.
\IO(X)
p(X)
X X+dx
Probability of random variable to
I > fall in the interval[x, x +dx] :
Probability density function of random X+dx

variable and few observations. j p(x) dx = p()() X dx

X
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Bayes classification rule(1)

e Suppose we have 2 classes and we know probability
density functions of their feature vectors. How some new
pattern should be classified?

p(x|w,) p(x|w,)
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Bayes classification rule(2)

p(x|w,) Suppose, sampl&  can belong to only
2
/ two classes:\\, and,

(x| w,) \\ Zﬁﬁbﬁﬂﬁf n?fc Egédim variable to fall in the intervglx
P(Wl) X P((X [ dX) i (X isfrom Wl))
o = P(w;) p(x | wg) x lx
' " P(w,) x P((x O dX) i (Xistom W)

Probability of random variable
to fall in the interval X : < T P(W,)xP((xLdx) it (Xistom W, ))

= P(wy) p(x|wy) x dx+ P(w,) p, (X ] w,) x dx

Probability of random variable to be from cla¥;  wherll# ifiathe intervadX

rorepltyefendomarenie o P(w) p(x| ) ¥
P((X|sfromW1)'f(XDdX))‘P(Wllx)_P( W,) p(x|w,) X dx+ P(w,) p, (X]|w,) x dx
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Bayes classification rule(2)
e Bayes formula:
P(Wi | X) — p(X | VV(.))P(VV.) P(W,) - prior class probability
P(X

|D(WI | X) - posterior class probability

2
p(x) = Z p(X | W ) P(VV|) p(x | W. ) - likelihood of samplex
=1 | (or density of clas§V, )

Above formula is a consequent of following
probability theory equations:

P(A,B) = P(A| B)P(B) = P(B| A)P(A)
P(C)=P(C,A) +P(C,B), f AnB=0,A0B=1
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Bayes classification rule(3)

» Bayes classification rule: classify x to the clags
which has biggest posterior probability(W | X)

Pw, [ X)>P(w, [x) ? w : w,

Using Bayes formula, we can rewrite classification rule:

p(X [ W) P(W) > P(X[W,)P(W,) 2 W, & W,



Center for Unified Biometrics and Sensors e 3 k;@

University at Buffale The Stare University of New York e

http://www.cubs.buffalo.ed

Estimating probability density function.

* In applications, probability density function of class
features is unknown.

« Solution: model unknown probability density functigfXx | W)
of classW, by some parametric functigh(X; &) and
determine parameters based on training samples.

Example model pdf as a Gaussian function with unitary
covariance matrix and unknown mean

0.163
0.7
0.027
0.047
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Maximum likelihood parameter estimation

*\What is the criteria for estimating parameters g7
« Maximum likelihood parameter estimation:

Parameter & should maximize the likelihood of observed
training samples

POX;8) = P(Xy, Xosennn Xy [6) = D p(X;6)

e Equivalently, parameter &should maximize
loglikelihood function:

In( p(X;8)) =In( p(x, %,,....Xy |F)) = Zln( P(X%;6))
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ML-estlmate for Gaussmn pdf

In( pX; 44)) = Zln( p(X; 1)) = ZIn( ).,2 e )

=-Nin((272)'") - Z(X —H)°

To find an extremum of functlon In( p(X;8)) (with
respect to @) we equal its gradient to O:

0 In( p(X; 1))
oL, N
O, In( p(X; ) = : => (X, —u)=0
OIn( p(X; ) | =
o4,

Thus, estimate for parameter L/is: [/ = —Z X,
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* No direct computation of optimal values of parameters R , i, T,

IS possible.

» Generic methods for finding extreme points of non-linear functions
can be used: gradient descent, Newton’s algorithm, Lagrange
multipliers.

» Usually used: expectation-maximization (EM) algorithm.
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Nonparametric pdf estimation
Histogram method:

P(X)

el

Split feature space into bins of width h.
Approximate p(x) by:

_ 1 Numberof training samplesnside bin
h  Total numberof training samples

p(x)
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Nearest neighbor pdf estimation

Find k nearest neighbors.
° Let V be the volume of
To the sphere containing
o these k training samples.

° Then approximate pdf by:

O 1 k

> Ax:__
p(X) VA
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Parzen windows.
P(X)

Each training point contributes one Parzen kernel function
to pdf construction:

5= L3 Lg( X=X
P =22 h¢( - j

=1

* Important to choose proper h.
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Parzen windows for cluster centers

» Take cluster centers as centers for Parzen kernel
functions.

» Make contribution of the cluster proportional to the
number of training samples cluster has.

px) =~ | ¢

12'\': N. [C—X
N <='{ h h
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Overfitting

v

When number of trainable parameters is comparable to the
number of training samples, overfitting problem might

appear. Approximation might work perfectly on training
data, but not well on testing data.
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Avoiding overfitting

* No good error estimates from training methods
« Use simpler classifier (with fewer trainable parameters)
» Use separate validation/test data to test the training

Possible training/testing procedure resulting iarfitting effect:

—_

Train 1 Test 1

Choose
best
tested

Train 2 Test 2

Might still get bad
TestN ) performance on
production system

o We
L

Train N



