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Pattern Recognition

Approximating class densities, Bayesian
classifier, Errors in Biometric Systems

B. W. SilvermanDensity estimation for statistics and data analysis. London: Chapman and Hall, 1986.

http://www.acsu.buffalo.edu/~tulyakov/papers/tulgak2009 CyberSecurity Biometrics.pdf
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Bayesian classification

e Suppose we have 2 classes and we know probability
density functions of their feature vectors. How some new
pattern should be classified?

* Bayes classification rule: classify x to the class
which has biggest posterior probabi P(w, | x)

Piw, [X)>P(w, |X) ? w, @ W,

posterior

Using Bayes formula, we can rewrite classification rule:

p(x|wy)P(wy) > p(X|W,)P(W,) 7w o W,
likelihood prior
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Estimating probability density function.

e Parametric pdf estimation: model unknown probability

density functiomp(x|w ) of clagg by some parametric
function p (x;£) and determine parameters based on

training samples. 1

1 2
——(X=H)
Example Gaussian function P(X; ) = 2

e
(277)”2

* Non-parametric pdf estimation:

1. Histogram
2. K nearest neighbor
3. Kernel methods (Parzen kernels or windows)

. 1 (1, %=X -
- - = Is the number of
p(X) N ;( h ¢( h j] N training samples

4. Other methods (estimating cumulative distribution function first,
SVM density estimation, etc.)
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Estimating kernel width

Non-parametric pdf estimation:

 Fixed kernels:

« Adaptive kernels:

'E’(X):;iu%X?D

ﬁ(X)=;i(§¢i[X?n
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Estimating kernel width

Recall, we used maximum likelihood method for parametric pdf
estimation:

max p(X;0) = max P(X, X5 .. s Xy |6) = maxlj P(X,;6)

Can we use same method for estimating the kernel vindth ~ ?

A i No, the max is not achievable:
P(x)

L Zaees-

h- 0
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Estimating kernel width

Solution: separate model data (kernel centers) from testing data
- cross-validation technigue

ML
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Estimating kernel width
Tried maximum likelihood cross-validation and still diverges?

N X —X
mslxﬂ %Z%gb Ihk .
= i#£Kk
This might happen if data is somewhat discrete:

A

P(x)

ML

Solution - truly separate model data from testing data:
A

A | 1 (%=X
mr?‘XB N 2 E‘b( h jj

X # X,
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Examples of pdf estimation

h] = ] h; - 05 h = 0 1
Parzen-window
n=1 (kernel) estimates of
a univariate normal
| - density using
2 0 2 -2 0 2 -2 0 2 ) .
different window
widths and numbers
n=10 of samples. (DHS)
2 o 2 2 0 2 2 0 2
0 Heuristic method of
"o width calculation:
2 0 2 -2 b 2 -2 0 2 h — hl
=L
-2 0 2 -2 0 2 -2 0 2
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h=1 h,=0.5 h=0.2

n=1

0 1 2 3 4 0 / 2 3 4

1 1 .

Parzen-window (kernel)
n=l6 estimates of a bimodal
ﬂ /\ density using different

o . s . 0 . 3 4 window widths and

] f, numbers of samples.
n=256
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Examples of pdf estimation
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Error in pdf estimation

S P
p(x)

X

Discrepancy between true densl@(X) and
its estimation P(X)

MSE, () = E{ p(X) - p(x)}*

- Mean Square Error

MISE () = [ E{ B(x) - p(x)} *d

- Mean Integrated Square Error

MSEX( f)) = E{ f)— p}2 = E{ FAJZ - Zﬁp T pz} (Expectations are

=E{p°}-2E{ P} p+ p°

taken over the set
of possible

:{ Ef)}Z . 2{ EI’:‘)} p + p2 + [E{ f)Z} _{ Ef)}Z] approximations or

=[Ep- pf* +|E{ED - B}]

over the sets of
training samples)
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Bias and variance of estimation error
MSE, (p) = [Ep- p]’ +|E{EP - p}?]

Bias Variance

Ef) - Average approximation

~ 1 (x-y
O CHES TR e
/ Biasis the difference between true
density and average approximation

p(x) o
Varianceis the difference between
average approximation and

individual approximations

S x Smaller kernel width reduces bias,
DUt Increases variance.
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Bias and variance of estimation error
If some assumptions on the true density are made ie(.pf'(x))zdx <o )thenit

IS possible to analytically find the kernel width whic

gives sesalM | SE ( f))

Silverman (Parzen):
-1/5

hopt — k2—2/5U¢(t)zdt}1/5U p"(X)ZdX} L5

Optimal kernel width gets smaller when the number of training sanpl
increases. For optimal kernel Widtﬂ\/IISE( f)) also decreases:

MISE ~ C(¢){[ p"(x)2 N

Note, that IO(X) is unknown. Above formulas are usefuh&wry, but not for
practical applications.

For multivariate pdf approximation: MISE ~ n—4/(4+d)

The performance decreases exponentially when the number of dimensireasesc
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Bayesian classification

» Bayes classification rule: classify x to the claw which has biggest
posterior probabilityP (W | X)

Piw, [X)>P(w, [x) ? w @ w,

» Bayes classification rule minimizes the total probability of
misclassification.

 Errors happen when samples of class 1 are incorrectly obastifbelong
to class 2, and samples of class 2 are classified to belorapsoicl
* The cost of making these errors can be different :

Al - the cost of misclassifying samples of class 1

/]2 - the cost of misclassifying samples of class 2



Center for Unified Biometrics and Sensors - *?
University at Buffale The Stare University of New York - b e

http://www.cubs.buffalo.ed

Total cost (or risk) of cIaSS|f|cat|on

Classification algorithm splits feature space imto decision regions:
R1 - samples in this region are classified as being in class 1

F\>2 - samples in this region are classified as being in class 2

I P(X| Wl)dX - the proportion of samples of class 1 being classified as class 2
R2

j P(X] WZ)dX - the proportion of samples of class 2 being classified as class 1

Ry
P(w, )j P(X|w,)dx - the proportion of all input samples being class 1 but
classified as being in class 2

P(w, )j P(X|w,)dx -the proportion of all input samples being class 2 but
classified as being in class 1

Cost = A,P(w;) | p(x|w)dx+A,P(w,) | p(x|W,)dx - total cost
R
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Minimizing total cost of classification
SinceR, andR, cover whole feature space

| pOcIw)ax+ [ p(x[w)dx =1
Ry R,

Thus
Cost = 4,P(w){1- [ p(x| W) +A,P(w,) [ p(x|w,)dx
Ry Ry

= AP(W) + [ (A,P(w,) p(x| w,) = A, P(wW,) p(x | w;))dx
Ry

Cost is minimized if Rl includes only points where

Azp(Wz) p(X | Wz) _Alp(wl) p(X | Wl) <0
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Bayesian classification
Bayesian classifias an optimal classifier minimizing total class#dtmon
cost. Such classifier is possible only if we haviéknowledge about
class distributions.

If A,P(wW)p(x|w,)>A,P(w,)p(x|w,) thenclassiff as class 1.
If A,P(W)p(x|w,)<A,P(w,)p(x|w,) thenclassiff as class 2.

Alternatively, assuming non-zero terms, the classgamment is based on

p(x| W) _ A,P(w) p(x|w) _ A,P(w,)
testing whether ‘i jw,) ~ APw,) O p(x|w,) - AP(W,)

p(x|w,) _ A,P(w,)
p(x|w,) ~ A,P(w,)

- likelihood ratio

Decision surface separates two decision regions

p(X|w,)
p(X| W)

p(xw,) > (< )/1 2P(W,)

- likelihood ratio test
p(x|w,) A,P(w,)
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Performance of Bayesian

clas

Denote: . AZP(WZ)
A P(w,)

Rl(t) :{Xl p(Xlwl) >t\

p(X|w,)

sification

- decision threshold

» - decision region of class 1 for thresh t

~ - decision region of class 2 for threshdid

Rz(t):{X| p(xlwl) St\

p(X|w,)

MR (1) = [ p(x|w;)dx
Ry ()

MR, (t) = | p(x]w,)dx
Ry (1)

- misclassification rate for class 1 and threshdid

- misclassification rate for class 2 and threshdid



o

Center for Unified Biometrics and Sensors

VR A

University at Buffale The Stare University of New York =
http://www.cubs.buffalo.ed L

Performance of Bayesian
classification

MR, (t) and MR, (t) completely characterize theqremfince
of a Bayesian classifier

For a given misclassification costs A,  d agurior class
probabilities P(W,), P(w,)  we fing - A2P(W,)
A P(w)

Then the (mis)classification cost is

Cost = A,P(W)MR,(t) + A,P(w,) MR, 1)




Center for Unified Biometrics and Sensors

1/
University at Buffalo The State University of New York e l%’
http://www.cubs.buffalo.ed '

ROC of a Bayesian classification
MR, (t) and MR, (t) are used only with the the sdme

Thus the parametef IS not important angpdréormance of a
Bayesian classifier can be characterized only byéationships

betweenMR (I) andlR,(t)

Example of an optimal
Bayesian ROC curve-{(— )
and some non-optimal
classifier's ROC curve-(---- ).

For a givenMR, th®IR, ofa
non optimal classifier should be
bigger; otherwise non-optimal
classifier would outperform
optimal.
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Biometric Application Types

= Verification System (1:1)
» Claim is made (enrollee identity)
= User’s biometric is matched only with stored biometric of claimed
enrollee
» The decision to accept claim is made using only one matching score

» |dentification System (1:N)
= No claim about identity is made
» User’s biometric is matched with stored biometrics of all enrolled
persons
» The highest matching score determines the most probable enrollee

» The decision about accepting identification attempt is made based on
the matching score for that enrollee (and optionally using other matching

scores too)

=Screening
» Matching against a watch list
» Opposite of verification
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Performance of Verification System

For biometric matchers (person identity verificajiave distinguish two
classes:

» Genuine- person’s claimed identity is correct

» Impostor- person’s claimed identity is in correct

The decision for genuine class isto accept, and the decision for the impostor class
Isto reject. The decision is usually done based on a single matching score of input
biometric with the enrolled biometric template of claimed identity person.

Instead of optimal pOX| ) >(<) 6 use(<) 6
o B(x| W) pP(x|w,)

IS monotonous, these decisiare equivalent.
p(X|w;)

Instead of MR (1) antIR,(t)  use
FAR(t) = | p(x|imp)dx -false accept rate for threshold

x>t

FRR(1) = . p(x| gen)dx -false reject rate for thresholg

X<t
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Errors in Verification Systems

Each verification attempt has two possibilities:
1. Genuine event - input biometrics and stored biometrics
from claimed identity belong to the same person.
2. Impostor event - input biometrics is different from
claimed identity biometric

The scores produced by matching algorithm will have
distributions:

P, (S) = P(s|genuine event)
P, (S) = P(s|Impostor event)
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Errors in Verification Systems

FAR and FRR are determined by the decision rule — accept
or reject results of recognition.

Usually FAR and FRR are defined using some threshold:

FAR(O) = j P (S)ds = P(s > & |impostor event)

g
Also called: False Match Rate (FMR)

0
FRR(O) = J' P, (S)ds = P(s < &|genuine even)

Also called: False Non-Match Rate (FNMR)
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Errors in Verification Systems

Non-match
scores ... p (s)

Match
scores ... p_(s)

Figure 5.2: The non-match scores are on average lower than the match scores; in
this case, the threshold T is set high to minimize False Accept.
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ROC Curve

ROC curve connects AR(6)  ahéRR(6) curves.

Note that they both use sanf®  at the same time, so we are
able to construct such plot.

1
FNMR

Figure 5.4: The ROC curve expresses the trade-off between FMR and FNMR.
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FNMR

Taking log( FAR(6))
and log( FRR(6))

instead of FAR(6)
Figure 5.5: The ROC with one probability scale in logarithmic form; on the left the RR I
FMR is expressed in logarithmic form, on the right the FNMR is in logarithmic form. and F (9 ) IS

reasonable if they are
small.

T > -0
[0t 102 “102% . 107 1

FRR

T»> -00

10+, 107 107> 10 1

Figure 5.6: The ROC with both probability scales in logarithmic form.
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Types of ROC Curve

|

1

H T—-00
Detection

rate

T— cO
0 1
False Alarm Rate

Figure 5.7: A detection error curve with the detection rate (1 — FNMR), plotted
against the False Alarm Rate.
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Using ROC Curve

~ Operating points

£

‘.‘.‘j fﬂ ;

/] r I
,/ / | —— matcher a |
/ | — matcher b |
& | ! J

FNMR
Target FNMR
FMR
0 1

Figure 5.8: Two distinct ROC curves and a sample operating point specified with a
target FMR. Matcher 6 is more accurate than a for all T'.
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Comparing ROC Curves

T > O

FNMR

\ I—— matcher a |
\ FI\/IRl | — matcher & |

Figure 5.9: Which matcher is best can depend on the operating point chosen.
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Comparing ROC Curves

Area under ROC curve (1-
FRR vs FAR) represents
the probability that random
genuine score is high

than random impostor
score.

True Positive rate

0 0.2 0.4 0.6 0.8 1.0
False Positive rate
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Comparing ROC Curves

Compare match and non-match score densities by d-prime
method: d’ = Hm ~ Hn

2 2
+
Jo2+ 07
4 FNMR
px)
a
Matcher a
16
px)
b\
Matcher b 0 FMR

Figure 5.10: Different ROCs for two hypothetical matchers a and b with identical
d’. Here Gaussian score distributions with identical means and different variances
lead to the same d’ but different ROCs.
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Comparing ROC Curves

T >
FNMR
EE
L,\
b N\
% Minimum expected error
N\ T > -0
- x FMR

Figure 5.11: The minimum expected error will not generally be found at the same
operating point as the Equal Error Rate.

Equal Error Rate (EER)EER = FRR(6) = FAR(6)
at & such as~RR(0) = FAR(6)

Minimum Total Error Rate (TER):
TER = m;n FRR(G) + FAR(H)
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Trade-offs

Selection of the operating point in a particular application
IS a trade-off between security and convenience.

_— secure
FNMR

| —— matcher a J
| — matcher b |

convenient

0 FMR

Figure 5.13: ROCs for Matcher a and b. Matcher b may be preferred for convenience and

Matcher a for security..
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Estimating FAR and FRR

In contrast to estimating pdf, FAR and FRR are easily estana

FAR() = [ p(x|imp)dx = {x 1% >1,x is impostor}
e {x | is impostor}|

| x <t, X IS genuine
FRR() = [ p(x| gend = (51% <t 5 genuine)
2 {x | % is genuine}|

TypeS of ROC curves: { FRR(t)1 FAR(t)} —oo<t<oo

{FAR(t), P(gen)(1- FRR(t)) + P(IMp) FAR(t); ...
{log FRR(t),log FAR()} _......
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Using FAR and FRR

In Bayesian framework we want to minimize total cost:
Cost =C_,P(Imposto )P(s > 6 |imposto )
+C_;P(genuine) P(s< & | genuine)
= CFAPimp FAR(Q) T CFRPgen FRR(H)

Correct setting of/  in verification application requires
estimating C , C,, P(impostor), P(genuine)
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Example
Consider the problem of deploying biometric matcher
for an amusement park admission
C.r =320 - cost of accepting impostor to the park
Rmp =1% - probability of impostor attempts
C= $1 - cost of rejecting genuine user
P =99%% - probability of genuine attempts

gen
Cost =C.,P,,FAR(O) + C.;P,.,FRR(6)
=20x.01x FAR(f) +1x.99% FRR(H)

= 2x FAR() +.99% FRR(6)
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— — — Face matcher 'C’
Fingerprint matcher 'ri’

0.25

0.2 FAR=FRR

———
|

—=

0.1 A\ L -
\ s 2FAR+.99FRR=C

0.05

0 - I | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3
FAR

Face matcher ‘C’ better minimizes cost

Cost =.2x FAR() +.99x FRR(6)
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0.3 . T
— — — Face matcher 'C’
Fingerprint matcher 'ri’
0.25F
|
02} FAR=FRR
I
o 0.15h
|
\
\ .
0.1\ v
\ L .2FAR+.99FRR=C
0.051
0 N 1 | | | |
0 ORBQ 0.1 |2p1\|:5{ 0.2 0.25 0.3
If we had more impostor attempts, sd_%?imp =10% , then matcher

‘ri’ would get lower cost Cost = 2 FAR(Q) + .9 X FRR(@)
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Errors in Identification Systems

N people are enrolled in the database. The recognition
algorithm performs N matchings with output scores:

S >S >..>8S,

(the scores are ordered by magnitude, but not by peo

The decision algorithm usually considered:
* Accept class 1 if

s>fand 6>s,>...>5s,

* Reject otherwise
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Errors in Identification Systems

Other types of decisions involve selecting a subset of matched

classes:
Threshold based:

§>%>m>%>9

-select all classes bigger than thres
*Rank —based:
-select k classes with best scores
*Hybrid:

-select based on threshold, if not successful sklec
classes based on rank
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FNMR and FMR in Identlflcatlon

Systems
FNMR — False non-match rate:

FNMR() = FRR(6) = j D, (S)ds = P(s < 8| genuine)

FMR — False match rat

FMR(8) = P(maxs > & |i correspondtoall N -1limpostor event)
=1-P(s <@|i correspondtoal N -limpostor event)

=1- |_ P(s <&]|i correspond to oneimpostor event)

=1- |_ (1-P(s >&|i correspong to oneimpostor event))

=1-T7 [1—]0 pimp(s)dsj =1-(1- FAR(@)" ™
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FMR for different N

N

Probability
N
[

Scores

it
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Errors in Identification Systems

* FMR and FNMR might not adequately describe the
performance of identification systems
- closed set / open set identification
- rejecting all identification results might be a cort
choice
- errors are connected: impostor might be a top choice,
but genuine is also higher than the threshold
» Score belonging to different classes are usually
dependent, so FMR can not be effectively estimated by
means of FAR
« Still no good standard for measuring identification system
performance exists
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Investigating validity of i.i. d
assumption

Example:ldentification system with 2 classes — genuine and impostor

08 T T bl T

— (NUINES

0.7F ! \

= = = |mpostors

Scenario 1:
Corrldent<:
Scenario 2:

S =9
o (=2}
T T

-
-

Probability

02r ”
oaf Corrldent =1

0 05 1 15 2 25
Score l

Fig. 1. Hypothetical densities of matching(genuine) and non

matching(impostors) scores.
Consider two possible scenarios on how the matching scores Dependence of scores
are generated during an 1dentification attempt: influences
1) Both scores s,., and s;,,, are sampled imdependently performance in
from genuine and impostor distributions. . g .
a
2) In every identification attempt : S, = Sgen — L. identification systems




