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Pattern Recognition

Approximating class densities, Bayesian 
classifier, Errors in Biometric Systems

B. W. Silverman, Density estimation for statistics and data analysis. London: Chapman and Hall, 1986.

http://www.acsu.buffalo.edu/~tulyakov/papers/tulyakov_2009_CyberSecurity_Biometrics.pdf
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Bayesian classification

• Suppose we have 2 classes and we know probability 
density functions of their feature vectors. How some new 
pattern should be classified?

• Bayes classification rule: classify x to the class     
which has biggest posterior probability )|( xwP
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Using Bayes formula, we can rewrite classification rule:
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likelihood prior
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Estimating probability density function.

• Parametric pdf estimation: model unknown probability 
density function                 of class      by some parametric 
function                 and determine parameters based on 
training samples.
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• Non-parametric pdf estimation:
1. Histogram
2. K nearest neighbor 
3. Kernel methods (Parzen kernels or windows)

4. Other methods (estimating cumulative distribution function first, 
SVM density estimation, etc.)
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Estimating kernel width

• Non-parametric pdf estimation:

• Fixed kernels:
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• Adaptive kernels:
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Estimating kernel width

Recall, we used maximum likelihood method for parametric pdf 
estimation:
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Estimating kernel width

Solution: separate model data (kernel centers) from testing data
- cross-validation technique
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Estimating kernel width

Tried maximum likelihood cross-validation and still diverges?
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This might happen if data is somewhat discrete:
)(ˆ xp

Solution - truly separate model data from testing data:
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Examples of pdf estimation

Parzen-window 
(kernel) estimates of 
a univariate normal 
density using 
different window 
widths and numbers 
of samples. (DHS)of samples. (DHS)
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Heuristic method of 
width calculation:
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Examples of pdf estimation

Parzen-window (kernel) 
estimates of a bimodal 
density using different 
window widths and 
numbers of samples.
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Examples of pdf estimation

Parzen-window (kernel) 
estimates of a bivariate 
normal density using 
different window widths 
and numbers of 
samples.
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Error in  pdf estimation
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its estimation              :
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Bias and variance of estimation error
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Bias Variance
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Biasis the difference between true 
density and average approximation

Varianceis the difference between 
average approximation and 
individual approximations

Smaller kernel width reduces bias, 
but increases variance.
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Bias and variance of estimation error

{ } { } 5/15/125/125/2
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Silverman (Parzen):

If some assumptions on the true density are made (e.g.                                  ) then it 
is possible to analytically find the kernel width which gives smallest    

Optimal kernel width gets smaller when the number of training samples       

∞<′′∫ dxxp 2))((
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nOptimal kernel width gets smaller when the number of training samples       
increases. For optimal kernel width                         also decreases:

n
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Note, that               is unknown. Above formulas are useful for theory, but not for 
practical applications.
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For multivariate pdf approximation:

The performance decreases exponentially when the number of dimensions increases
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Bayesian classification
• Bayes classification rule: classify x to the class           which has biggest 
posterior probability )|( xwP i

iw
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• Bayes classification rule minimizes the total probability of 
misclassification. 

Cost of errors.

• Errors happen when samples of class 1 are incorrectly classified to belong 
to class 2, and samples of class 2 are classified to belong to class 1.
• The cost of making these errors can be different : 

1λ - the cost of misclassifying samples of class 1

2λ - the cost of misclassifying samples of class 2
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Total cost (or risk) of classification
Classification algorithm splits feature space into two decision regions:

1R - samples in this region are classified as being in class 1

2R - samples in this region are classified as being in class 2
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Minimizing total cost of classification

Since        and          cover whole feature space
1R 2R
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Bayesian classification
Bayesian classifieris an optimal classifier minimizing total classification 
cost. Such classifier is possible only if we have full knowledge about 
class distributions.

If                                                                      then classify      as class 1.  )|()()|()( 222111 wxpwPwxpwP λλ > x

If                                                                      then classify      as class 2.  )|()()|()( 222111 wxpwPwxpwP λλ ≤ x

Alternatively, assuming non-zero terms, the class assignment is based on
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Performance of Bayesian 
classification

Denote: 
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Performance of Bayesian 
classification

)(1 tMR and                completely characterize the performance 
of a Bayesian classifier

)(2 tMR

For a given  misclassification costs             and  prior class 
probabilities                           we find
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ROC of a  Bayesian classification
)(1 tMR and                 are used only with the the same       .)(2 tMR t

Thus the parameter        is not important and the performance of a 
Bayesian classifier can be characterized only by the relationships 
between                 and                  .

t

)(1 tMR )(2 tMR

1MR
0

1

1

2MR

Example of an optimal 
Bayesian ROC curve (          ) 
and some non-optimal 
classifier’s ROC curve (         ).

For a given          the          of a 
non optimal classifier should be 
bigger; otherwise non-optimal 
classifier would outperform 
optimal.

1MR 2MR
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Biometric Application Types
� Verification System (1:1)

� Claim is made (enrollee identity) 
� User’s biometric is matched only with stored biometric of claimed 
enrollee
� The decision to accept claim is made using only one matching score

� Identification System (1:N)
� No claim about identity is made 
� User’s biometric is matched with stored biometrics of all enrolled 
persons
� The highest matching score determines the most probable enrollee
� The decision about accepting identification attempt is made based on 
the matching score for that enrollee (and optionally using other matching 
scores too)

�Screening 
� Matching against a watch list
� Opposite of verification
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Performance of Verification System

The decision for genuine class is to accept, and the decision for the impostor class 
is to reject. The decision is usually done based on a single matching score of input 
biometric with the enrolled biometric template of claimed identity person.

For biometric matchers (person identity verification) we distinguish two 
classes: 

• Genuine– person’s claimed identity is correct
• Impostor- person’s claimed identity is in correct

biometric with the enrolled biometric template of claimed identity person.
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Each verification attempt has two possibilities:
1. Genuine event - input biometrics and stored biometrics 

from claimed identity belong to the same person.
2. Impostor event - input biometrics is different from 

claimed identity biometrics.

Errors in Verification Systems

claimed identity biometrics.

)event genuine|()( spspgen =

The scores produced by matching algorithm will have 
distributions:

)eventimpostor |()( spspimp =
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Errors in Verification Systems

FAR and FRR are determined by the decision rule – accept 
or reject results of recognition.

Usually FAR and FRR are defined using some threshold:

θθ >== ∫
∞

)eventimpostor |()()( θθ
θ

>== ∫ sPdsspFAR imp

)event genuine|()()( θθ
θ

<== ∫
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sPdsspFRR gen

Also called: False Match Rate (FMR)

Also called: False Non-Match Rate (FNMR)
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Errors in Verification Systems
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ROC Curve

ROC curve connects                  and                   curves.)(θFAR )(θFRR
Note that they both use same      at the same time, so we are 
able to construct such plot.

θ
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Types of ROC Curve

Taking                           
and                        

))(log( θFAR
))(log( θFRRand                        

instead of                   
and                  is 
reasonable if they are 
small.

))(log( θFRR
)(θFAR

)(θFRR
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Types of ROC Curve
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Using ROC Curve
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Comparing ROC Curves
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Comparing ROC Curves

Area under ROC curve (1-
FRR vs FAR) represents 
the probability that random 
genuine score is higher genuine score is higher 
than random impostor 
score.
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Comparing ROC Curves
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Compare match and non-match score densities by d-prime 
method: 
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Comparing ROC Curves

)()( θθ FARFRREER ==Equal Error Rate (EER):
at     such as )()( θθ FARFRR =θ

)()(min θθ
θ

FARFRRTER +=
Minimum Total Error Rate (TER):
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Trade-offs

Selection of the operating point in a particular application 
is a trade-off between security and convenience.
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Estimating FAR and FRR
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In contrast to estimating pdf,  FAR and FRR are easily estimated:
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Types of ROC curves:
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In Bayesian framework we want to minimize total cost:

)impostor|()impostor( θsPPCCost FA >=

Using FAR and FRR
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)impostor|()impostor(
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Correct setting of     in verification application requires 
estimating 

θ
)genuine(),impostor(,, 21 PPCC
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Consider the problem of deploying biometric matcher 
for an amusement park admission

Example

20$=FAC - cost of accepting impostor to the park

%1=impP - probability of impostor attempts

)(99.)(2.

)(99.1)(01.20

)()(

θθ
θθ

θθ

FRRFAR

FRRFAR

FRRPCFARPCCost genFRimpFA

×+×=
××+××=

+=

imp

1$=FRC - cost of rejecting genuine user

%99=genP - probability of genuine attempts
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)(99.)(2. θθ FRRFARCost ×+×=
Face matcher ‘C’ better minimizes cost
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If we had more impostor attempts, say                         , then matcher 
‘ri’ would get lower cost )(9.)(2 θθ FRRFARCost ×+×=

%10=impP
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Errors in Identification Systems

N people are enrolled in the database. The recognition 
algorithm performs N matchings with output scores:

Nsss >>> ...21
(the scores are ordered by magnitude, but not by people id)(the scores are ordered by magnitude, but not by people id)

The decision algorithm usually considered: 
• Accept class 1 if 

• Reject otherwise

Nsss >>>> ...  and  21 θθ
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Errors in Identification Systems

Other types of decisions involve selecting a subset of matched 
classes:

•Threshold based:

-select all classes bigger than threshold

 ...21 θ>>>> ksss

•Rank –based:

•Hybrid:

-select all classes bigger than threshold

-select k classes with best scores

-select based on threshold, if not successful select k 
classes based on rank
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FNMR and FMR in Identification 
Systems

FNMR – False non-match rate:
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FMR for different N
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Errors in Identification Systems

• FMR and FNMR might not adequately describe the 
performance of identification systems

- closed set / open set identification
- rejecting all identification results might be a correct - rejecting all identification results might be a correct 
choice
- errors are connected: impostor might be a top choice, 
but genuine is also higher than the threshold

• Score belonging to different classes are usually 
dependent, so FMR can not be effectively estimated by 
means of FAR
• Still no good standard for measuring identification system 
performance exists
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Investigating validity of i.i.d. 
assumption

Example:Identification system with 2 classes – genuine and impostor 

Scenario 1:
CorrIdent<1CorrIdent<1
Scenario 2:

CorrIdent =1

Dependence of scores 
influences 

performance in 
identification systems


