
http://www.cubs.buffalo.edu

Feature Selection

Scatter matrices, Fisher’s discriminant, 
Principal Component Analysis.
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Feature extraction – Structural 
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Feature extraction – Structural 



http://www.cubs.buffalo.edu

Feature extraction – Texture 
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Feature extraction – Texture 
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Feature extraction – Texture 
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What features are good?

Class 1

Class 2

Feature 1 selected
Feature 2 selected
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What features are good?

Good features have low intraclass variation and large 
interclass variation

Selection criteria:
• Hypothesis testing, e.g. the hypothesis that distributions of 
each class have different means
• ROC curves
• Class separability measures
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ROC curve for feature selection

We can construct ROC curves and somehow estimate 
the utility for every feature:
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Scatter matrices

Covariance matrix for class     :
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Criteria for feature selection using scatter 
matrices (1)

small intraclass variationSmall                        or)( wtrace S )det( wS

large interclass variationLarge                        or)( btrace S )det( bS

large interclass variationLarge                        or)( mtrace S )det( mS
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Criteria for feature selection using scatter 
matrices (2)

• Maximize

• Maximize

• Maximize
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(Theodoridis, Koutroumbas – “Pattern Recognition”)

=3J 7.164(a) 5.12(b) 9.620(c)

Criteria for feature selection using scatter 
matrices (3)
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Fisher’s discriminant criterion
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In case of two classes and selection of one feature

Fisher’s criterion is to maximize

∑∑
= ≠ +

−
=

M

i

M

ij ji

jiJ
1

22

2)(

σσ
µµ

Extension to multi-class problems:
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Feature Subset Selection

Using criteria for good features, we can explore intuitive 
algorithms for selecting best      features out of         original:l m

• Apply some criterion to each feature; select      features with best 
one-dimensional criterion’s performance

• Try all different combinations of    features out of      ; for each 
combination use    -dimensional criterion’s performance

l

l
l

m

- easy to implement
- but features might be correlated: modify algorithm to only 
select features not strongly correlated with already selected

- computationally expensive
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Feature Selection by Linear Transform

Instead of selecting original features                    , we can 
select linear combinations of them:
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Feature Selection by Linear Transform

Solution:           is the projection onto subspace spanned by 
the       eigenvectors corresponding to      largest 
eigenvalues of 
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is an optimal projection

- Fisher’s linear discriminant
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Principal Component Analysis (1)

Criteria for feature selection:
transformed features should be uncorrelated:
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If                              , then 

Principal Component Analysis (2)

][ 1 maaA …= Λ== ARAR x
T

y

Solution:

][ T
x E xxR = is symmetric 

Hence it has a set of orthonormal eigenvectors        :ia

iiix aaR λ=

0,

0

0

00

1

2

1

≥≥≥























=Λ m

m

λλ

λ

λ
λ

…



http://www.cubs.buffalo.edu

Principal Component Analysis (3)

- Karhunen-Loeve transform
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Principal Component Analysis (4)



http://www.cubs.buffalo.edu

PCA for biometric data

• Biometric applications usually do not have enough data 
to learn intraclass variation.  

• PCA can be well learned using interclass variations. 

• Particularly,  face recognition by PCA seems to deliver 
good results. 
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PCA for minutia extraction
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Maximizing information content of 
the features

• Fourier coefficients
• Moments 
• DCT (discrete cosine transform)
• Quantization
• Neural networks
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Neural Networks for Feature Selection
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• PDF estimation – need proper smoothing parameters 
(bin size in histogram method, kernel window in kernel 
methods)
• Draw ROC curves on the same graph in order to 
compare the performance of matchers
• Make sure same t is used for constructing ROC from 
FAR and FRR data

Project 1 discussion
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Sample pdf and FAR/FRR graph
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Sample ROC graph
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Face G matcher


