Classifier Combination – Statistical Approach

Sergey Tulyakov, Venu Govindaraju
Center for Unified Biometrics and Sensors, University at Buffalo
Combination Field Overview

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Logic based</th>
<th>“Try them all”</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>- Assumptions on the meaning of combined data</td>
<td>Try few predetermined rules; choose one with best performance</td>
<td>The combination function is derived using training data and machine learning algorithms</td>
</tr>
<tr>
<td></td>
<td>- The combination algorithm is a predetermined rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ease of use</td>
<td>Average</td>
<td>Easy</td>
<td>Difficult</td>
</tr>
<tr>
<td>Training data requirements</td>
<td>Low</td>
<td>Average</td>
<td>High</td>
</tr>
<tr>
<td>Optimality of combination</td>
<td>No</td>
<td>Somewhat</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Center for Unified Biometrics and Sensors

University at Buffalo The State University of New York

May 08, 2008
Example of logic based approach – Dempster-Shafer Theory

\[P(X) \] - the power set of \(X \)

\[m : P(X) \rightarrow [0,1] \] - basic belief assignment

Belief: \[bel(A) = \sum_{B \subseteq A} m(B) \]
Plausibility: \[pl(A) = \sum_{B \cap A \neq \emptyset} m(B) \]

Dempster’s combination rule:

\[m_{1,2}(A) = (m_1 \oplus m_2)(A) = \frac{1}{1 - K} \sum_{B \cap C = A} m_1(B)m_2(C) \]

\[K = \sum_{B \cap C = \emptyset} m_1(B)m_2(C) \]

Not optimal:

- basic belief assignments are heuristically chosen
- many other similar rules were proposed claiming superior performance
- assumes statistical independence of combined events
Example of “Try them all” approaches

Kittler et al., “On Combining Classifiers”, 1998:

- 6 rules are justified under different assumptions:
 - Sum rule \(S_i = f(s_i^1, \ldots, s_i^n) = s_i^1 + \ldots + s_i^n \)
 - Product rule \(S_i = f(s_i^1, \ldots, s_i^n) = s_i^1 \times \ldots \times s_i^n \)
 - Max rule \(S_i = f(s_i^1, \ldots, s_i^n) = \max(s_i^1, \ldots, s_i^n) \)
 - Min rule \(S_i = f(s_i^1, \ldots, s_i^n) = \min(s_i^1, \ldots, s_i^n) \)
 - Median rule \(S_i = f(s_i^1, \ldots, s_i^n) = \text{median}(s_i^1, \ldots, s_i^n) \)
 - Majority vote \(S_i = f(s_i^1, \ldots, s_i^n) = \sum_j v_i^j, \quad v_i^j = \begin{cases} 1, \text{ if } s_i^j > s_i^k \quad \forall k \\ 0, \text{ otherwise} \end{cases} \)

Somewhat optimal:
- choose best performing rule
- no confidence that chosen rule is close to optimal
- multiple published results show that different rules can be best in different problems
Example of “Try them all” approaches

OR: 96.85% Accuracy
AND: 62.91% Accuracy
RMS: 96.11% Accuracy
Statistical approaches

- Combination problem - a problem of learning combination algorithm from training samples
- A set of learning algorithms is chosen with unknown parameters
- The best parameters are found with respect to the cost function and training data
- It is possible to give an estimate on the proximity of found solution to the optimal

Advantages:
Universal approximation property guarantees the closeness to the optimal solution

But:
Need to properly choose cost function and avoid overfitting
Field of research

Classifier combination

Non-ensemble combinations

Large number of classes

Other fusion application

Classifier Ensembles

Small number of classes

(Combining non-classifier expert estimates – non-generic application problems)

(Large number of automatically generated classifiers of the same type)

(Easily solved by constructing a secondary classifier in a score space)

• Verification Problems
• Identification Problems

• Biometric Applications
• Handwriting Applications
General statistical approach

- Most general combination algorithm is defined as map from (M classifiers) * (N classes) matching scores to N combined scores

\[S_i = \mathbf{f}_i(\{s_{j}^{k}\}_{k,j}) \]

- Learning such combination algorithms is possible only if N and M are small
- Example (D. S. Lee): handwritten digit recognition (10 classes), 2 OCR algorithms, neural network with 10*2 inputs and 10 outputs

Our problem: number of classes N is much bigger (>1000), need different approach
Research Result #1
– 4 Types of Combinations

M biometrics; N users

- Low \(C_f(M) \)
- Medium I \(NC_f(M) \)
- Medium II \(C_f(NM) \)
- High \(NC_f(NM) \)

\(C_f(k) \) - complexity of the family of functions \(f \) accepting \(k \) dimensional input – VC (Vapnik-Chervonenkis) dimension [Tulyakov 06]
Research Result #1
– 4 Types of Combinations

Highlights:

- Theoretical proof that found combination types have different strengths:
 The optimal combination of lower complexity type might not achieve the same performance as sub-optimal combinations of higher complexity type
- The performance comparison of combinations of different type can be avoided
- Most existing combination techniques are of low complexity type and can be extended to higher complexity type
- Rank-based methods (e.g. Behavior-Knowledge Spaces) are usually of medium II complexity type, which explains their frequent superior performance (despite omitting raw score information)
- Need to search for efficient combinations of higher complexity type and operating on raw matching scores
Research Result #2
- Utilizing Score Set Statistics

\{S_1^j, \ldots, S_i^j, \ldots, S_N^j\}

(scores assigned to different classes by the same matcher during identification trial)

\{\{r_1^j, \ldots, r_i^j, \ldots, r_N^j\}\}

Rank-based methods convert scores to ranks; score information is lost

\{\{(s_1^j, r_1^j), \ldots, (s_i^j, r_i^j), \ldots, (s_N^j, r_N^j)\}\}

Composite score and rank-based methods are still not efficient

\{\{(s_1^j, t_1^j), \ldots, (s_i^j, t_i^j), \ldots, (s_N^j, t_N^j)\}\}

Our approach: instead of rank use more powerful score statistics

Examples of score statistics:

1. \(t_i^j = r_i^j\) - Rank of score \(s_i^j\) among all scores \(\{s_1^j, \ldots, s_i^j, \ldots, s_N^j\}\)

2. \(t_i^j = sb s_i^j\) - The best score besides \(s_i^j\) among all scores \(\{s_1^j, \ldots, s_i^j, \ldots, s_N^j\}\)

3. \(t_i^j = \mu^j = \frac{1}{N} \sum_{i=1}^{N} s_i^j\) - sample mean
 \(t_i^j = \sigma^j = \left(\frac{1}{N-1} \sum_{i=1}^{N} (s_i^j - \mu^j)^2\right)^{1/2}\) - sample variance
Research Result #2
- Utilizing Score Set Statistics

Comparison of 3 methods:
- Traditional - no score statistics; use only s_i^j
- T-normalization: use scores normalized with the help of μ^j and σ^j: $s_i^j \rightarrow \frac{s_i^j - \mu^j}{\sigma^j}$
- Second best score model: instead of s_i^j use pair (s_i^j, sbs_i^j)

Second best score model consistently provides better performance than T-normalization or traditional (no model) approaches (shown results on BSSR1 set, ‘li’ & ’C’)

Future research:
- Use similar statistics for constructing medium I and high complexity combinations
- Other good statistics? Automatically finding useful statistics for a particular data?
Research Result #3
– Difference in Combinations for Verification and Identification Tasks

Verification Task:
• The combined score is thresholded to accept or reject verification hypothesis
• The optimization criteria: to minimize FRR for a given FAR
• Performance indicator: ROC curve

Identification Task:
• The class corresponding to the maximum of combined scores is chosen
• The optimization criteria: to maximize correct identification rate
• Performance indicator: correct identification rate, CMC curve
Research Result #3
– Difference in Combinations for Verification and Identification Tasks

Optimal combination algorithm:

- **Verification problem**: likelihood ratio (ratio of genuine and impostor score densities)
- **Identification problem**:
 - likelihood ratio is optimal only under certain conditions (e.g. if scores assigned to different classes by the same matcher are statistically independent)
 - generally, such conditions do not hold and *likelihood ratio is not optimal*
 - likelihood ratio combination can have worse performance than a single matcher
 - it seems that it is not possible to analytically express optimal combination function for identification problem

<table>
<thead>
<tr>
<th>Example</th>
<th>CMR is correct</th>
<th>WMR is correct</th>
<th>Both are correct</th>
<th>Either is correct</th>
<th>Likelihood Ratio</th>
<th>Weighted Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54.8%</td>
<td>77.2%</td>
<td>48.9%</td>
<td>83.0%</td>
<td>69.8%</td>
<td>81.6%</td>
</tr>
</tbody>
</table>

- Likelihood ratio combination has worse performance than a single matcher in identification mode;
- but it is superior to other methods in verification mode

May 08, 2008
The training of the identification system combination should process scores from one identification trial as a single training sample.
Research Result #4
– Iterative Methods for Finding Combination Algorithms in Identification Problems

Ideas for proposed combination methods:
• Instead of using all impostor scores in identification trial use only single best impostor score
• Best impostor score can be determined using currently trained combination algorithm => iterative training

Considered approaches:
• Best impostor likelihood ratio
• Sum of logistic functions
• Neural networks utilizing best impostor scores

<table>
<thead>
<tr>
<th></th>
<th>Likelihood Ratio</th>
<th>Weighted sum</th>
<th>Best Impostor Likelihood Ratio</th>
<th>Logistic Sum</th>
<th>Neural Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMR&WMR</td>
<td>4293</td>
<td>5015</td>
<td>4922</td>
<td>5005.5</td>
<td>5020.5</td>
</tr>
<tr>
<td>li & C</td>
<td>5817</td>
<td>5816</td>
<td>5803</td>
<td>5823</td>
<td>5826</td>
</tr>
<tr>
<td>li & G</td>
<td>5737</td>
<td>5711</td>
<td>5742</td>
<td>5753</td>
<td>5760</td>
</tr>
</tbody>
</table>

Some results:

Future Research:
• Theoretically - still do not know if any of proposed algorithms is optimal
• Practically - need more experiments and possibly other algorithms

May 08, 2008
Research Result #5
– Utilizing Independence of Matchers

Observation:
• Multimodal biometric matchers produce statistically independent matching scores – can use this fact(?) for combination

\[
\begin{align*}
\text{Training set} & \quad \{ (s_{1}^{g}, s_{2}^{g})_{k=1,\ldots,K} \} \\
& \quad \{ (s_{1}^{i}, s_{2}^{i})_{i=1,\ldots,L} \} \\
\text{Independence Knowledge} & \quad p_{g} (s_{1}^{g}, s_{2}^{g}) = p_{g} (s_{1}^{g}) p_{g} (s_{2}^{g}) \\
& \quad p_{i} (s_{1}^{i}, s_{2}^{i}) = p_{i} (s_{1}^{i}) p_{i} (s_{2}^{i}) \\
\end{align*}
\]

• Instead of approximating 2-dimensional densities of scores \(p_{g} (s_{1}^{g}, s_{2}^{g}) \), \(p_{i} (s_{1}^{i}, s_{2}^{i}) \) approximate 1-dimensional densities \(p_{g} (s_{1}^{g}) \), \(p_{g} (s_{2}^{g}) \), \(p_{i} (s_{1}^{i}) \), \(p_{i} (s_{2}^{i}) \) and multiply them

Proved: Theorem: Product of approximations has the same order of error as individual 1-dimensional approximations. [Tulyakov 06]
Research Result #5
– Utilizing Independence of Matchers

• Thus it is possible to improve the performance of combination algorithms by utilizing independence of matchers (better learning in low dimensions)
• Experimental results with likelihood ratio combination and Parzen window density approximations show that performance gains are rather small:

<table>
<thead>
<tr>
<th>Num Train Samples</th>
<th>Not using</th>
<th>Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.205</td>
<td>0.216</td>
</tr>
<tr>
<td>100</td>
<td>0.079</td>
<td>0.062</td>
</tr>
<tr>
<td>300</td>
<td>0.051</td>
<td>0.020</td>
</tr>
</tbody>
</table>

(Table shows averages of added error due to combination algorithm training over 100 runs)

Future Research:
Incorporate knowledge about classifier independence into other combination algorithms, e.g. neural network with special structure:
State of the Art?

• PAMI 1997 – Kittler et al., “On Combining Classifiers”
 - attempt to justify different combination rules
 - Our research: instead of combination rules use machine learning; it is only necessary to specify a complexity type of combination and optimization criteria

• PAMI 2005 – Snelick et al., ”Large-Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems”
 - “try them all” with adaptive normalization and user weighting
 - not clear from paper if adaptive normalization results in medium II or high complexity combination type
 - Our research: explicit use of matching score set statistics and differentiation between complexity types of combinations

• PAMI 2008 – Nandakumar et al., “Likelihood Ratio-Based Biometric Score Fusion”
 - justify likelihood ratio combination method; use it with externally derived score quality measure
 - Our research: the optimality of likelihood ratio method for verification problems is well-known, but it is not optimal for identification problems;
 - score set statistics is a good alternative for externally derived quality measure
Conclusions

Theoretical results:
• 4 complexity types of classifier combinations defined by the amount of combined information and the number of trained combination functions
• Verification and identification problems require different optimal combination algorithms
• At least 4*2=8 optimal combination algorithms might exist for a single application
• Utilizing independence of combined matchers can be beneficial

Experimental results:
• Using second best score statistics delivers significant performance gains
• Iterative training can improve the performance of combination algorithms in identification problems
• Utilizing classifier independence delivers only small improvement

Considered methods provide an exhaustive framework for combination problems with a small number of classifiers and large number of classes