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Abstract

This paper presents a methodology for separating handwritten foreground pixels, from background pixels, in carbon copied medical forms.
Comparisons between prior and proposed techniques are illustrated. This study involves the analysis of the New York State (NYS) Department
of Health (DoH) Pre-Hospital Care Report (PCR) [Western Regional Emergency Medical Services, Bureau of Emergency Medical Services,
New York State (NYS) Department of Health (DoH), Prehospital Care Report v4.] which is a standard form used in New York by all Basic
and Advanced Life Support pre-hospital health care professionals to document patient status in the emergency environment. The forms suffer
from extreme carbon mesh noise, varying handwriting pressure sensitivity issues, and smudging which are further complicated by the writing
environment. Extraction of handwriting from these medical forms is a vital step in automating emergency medical health surveillance systems.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

This research evaluates several algorithms that extract hand-
writing from medical form images (see Fig. 1) to eventually
provide the best handwriting recognition performance. This ex-
traction of handwritten stroke pixels from the image is known
as binarization. The research copy of the NYS PCR [1] is a
carbon mesh document where both the foreground handwriting
and the background carbon paper use approximately the same
intensity values. While the handwriting on the top form has di-
rect contact between ink and paper, the carbon does not transfer
to the paper if there is insufficient pressure. This loss of com-
plete character information in the carbon copy causes character
strokes to break after binarization, which leads to recognition
failures (the phrase pressure sensitivity issues will refer to this
situation). Prior binarization algorithms have been reported to
better manage noisy and complicated surfaces [2—5]. However,
the broken/unnatural handwriting due to ambulance movement
and emergency environments, as well as carbon smearing from
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unintentional pressure to the form, add further complexity to the
binarization task. A lexicon-driven word recognizer (LDWR)
[6] is used for evaluation of the binarization methods. Analysis
of the LDWR, as well as a full view of an actual NYS PCR
image, can be found in Ref. [7].

2. Carbon paper

The inconsistent carbon paper, which shows varying
grayscale intensities (see Figs. 1 and 2), is referred to as carbon
mesh. Fig. 1 shows an example of the “Objective Assessment”
region of the NYS PCR form. It provides an overview of the
complex nature of the handwriting on the carbon paper. Fig. 2
shows a 400% zoom of one word from Fig. 1. It shows the
carbon paper mesh integrated with the carbon handwriting
stroke. The displayed word abd, in Fig. 2, is a common ab-
breviation for abdomen. Since the carbon paper causes the
paper, the stroke, and any artifacts to have the same inten-
sities, the binarization problem becomes complex. Details
of the application of existing algorithms will be discussed
in the following sections. This paper describes an algorithm
for binarizing the handwriting on carbon paper while pre-
serving the handwriting stroke connectivity better than prior
algorithms.
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Fig. 2. Grayscale 256 carbon mesh handwriting example (400% zoom).

Pressure sensitivity issues, as a result of light strokes in pen-
manship, affect the extent of character connectivity after bina-
rization. In order for the carbon copy to receive a reasonable
representation of the top copy original, the health care profes-
sional needs to press down firmly with the writing instrument.
Since the emergency environment is not conducive to good
penmanship, the binarization and cleanup algorithms need to
compensate.

The carbon paper forms also contain guidelines, which often
interfere with the character strokes. These lines can be detected
by those pixels with a grayscale value less then a pre-determined
threshold; this is consistent across all forms in our data set.
To reduce stroke fragmentation, it is sufficient to retain the
pixels near the line, thus keeping most character ascenders and
descenders reasonably connected. This form drop-out step is
performed before binarization.

3. Prior work

In this section, methods described in previous works are com-
pared with our algorithm presented in this research. First we
consider the processing of the image in Fig. 3a, using various
filters. The histogram of this image, shown in Fig. 4, shows that
the foreground (handwriting stroke) and background (carbon
paper) use the same intensities in the supplied range. A split at
any position in the histogram results in loss of both foreground
and background information. The x-axis of the histogram rep-
resents the grayscale values 0-255 such that the left most po-
sition O represents black and the right most position 255 rep-
resents white. The y-axis of this histogram is the quantity of
pixels for its corresponding grayscale intensity. The mean, me-
dian and standard deviation are computations on the grayscale
intensities. The standard deviation shows the statistical dis-
persion of grayscale intensities with respect to the mean. The
smaller standard deviation value indicates the grayscale values
are clustered around the mean intensity value. The evaluation
of pre-processing filters followed by the application of existing
binarization algorithms on Fig. 3a is discussed throughout this
research.

Fig. 3. Smoothing operations (a) Original image + Form drop out (b) Mean
filter (¢) Median filter (d) Gaussian filter (e) Weiner filter.

Mean: 143.26
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Std Dev: 34.60
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Fig. 4. Histogram for image in Fig. 3a.

Gaussian, median, mean and Weiner filtering/smoothing have
been studied in previous works, as a base step, or an integrated
step, for noise removal and image enhancement [2,8—11]. Mean
filter (Fig. 3b) shows the least damage to strokes in our ex-
periments. Median filter (Fig. 3c) illustrates severe character
damage. Gaussian filter (Fig. 3d) demonstrates characters being
washed into the background. Weiner filter (Fig. 3e) produces
an image very similar to the mean filter, except the background
surface is slightly lighter and stroke edges are sharper. Gatos
et al. [2] uses the Weiner filter as a pre-processing step to filter
image noise.

Global thresholding algorithms determine a single thresh-
old and apply it to the entire image. In the PCR application,
the high pressure sensitive areas are binarized well, whereas
medium to low pressure areas run the risk of being classified
as background.

Other works use algorithms that address some weaknesses
of the Otsu [12,13] method, such as with degraded documents.
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Any algorithm that computes a global threshold splits the
histogram into foreground and background pixels using that
threshold. However, since both foreground and background
pixels can have the same intensities at different positions on the
image, splitting the histogram globally will incorrectly clas-
sify foreground pixels and backgrounds. The Wu/Manmatha
[4] method expects at least two histogram intensity peaks and
globally splits the histogram. This causes large portions of the
handwriting to be lost to the background. To compensate, a
histogram split is allowed to occur directly before the largest
intensity peak in the image (note the highest histogram peak
in Fig. 4). This improves the performance of the algorithm,
but, still suffers from stroke and background pixels trapped in
the largest histogram peak (see Fig. 4).

The Niblack binarization [14] algorithm is an adaptive tech-
nique that has been compared to other methods in applications
such as image and video text detection and extraction [15], low
quality camera images [16], low quality grayscale utility maps
(such as cable and hydro maps with various intensity and noise
issues [10]), and low quality historical documents [2]. This al-
gorithm results in severe noise, jagged edges and broken char-
acter segments. While post-processing improves the algorithm
performance, the broken character strokes result in lower per-
formance. This is due to mean-variance computations occurring
at lighter stroke regions.

Sauvola binarization [17] modifies the Niblack algorithm
[14] and attempts to suppress noisy areas. In the cases of
stronger handwriting pressure, Sauvola [17] has positive results.
However, Sauvola [17] has fewer positive results than Niblack
[14] in our experiments. Sauvola’s [17] noise suppression af-
fects the lighter strokes thereby causing incorrect recognizer
segmentation.

Gatos et al. [2] introduced an algorithm that incorporates
Sauvola [17], but this implies that the performance of Gatos
et al. [2] will drop along with that of Sauvola [17]. While
Gatos et al. [2] does illustrate a performance improvement over
Sauvola [17], this combination still under-performs Niblack
[14] after post-processing. This is because Gatos often loses
holistic features due to incorrect background estimation of the
paper.

Logical binarization uses heuristics for evaluating whether a
pixel belongs to the foreground or background. Other adaptive
binarization strategies are integrated with such heuristics. The
Kamel/Zhao algorithm [18] finds stroke locations and then later
removes the noise in the non-stroke areas using an interpolation
and thresholding step. Various stroke width combinations from
1-10 pixels were tried. However, the stroke is not adequately
traced using this algorithm.

The Yang/Yan [5] algorithm is a variant of the method devel-
oped by Kamel/Zhao [18]. The modifications are meant to han-
dle low quality images affected by varying intensity, illumina-
tion, and artifacts such as smearing. However, the run analysis
step in this algorithm is computed using only black pixels. Nei-
ther the foreground (handwritten stroke) or background (carbon
paper) of the carbon copy medical forms have black pixels; nor
are the foreground pixels the same intensity throughout. There-
fore, the stroke-width computation, which is dependent on the

run-length computation, cannot be trivially determined in the
carbon paper forms.

In addition to the binarization algorithms, various post-
processing strategies are commonly used. The despeckle al-
gorithm is a simple noise removal technique using a 3 x 3
mask to remove a foreground pixel that has no D8 neighbors
[9]. The blob removal algorithm is a 9 x 9 mask that removes
small pixel regions that have no neighbors [9]. The amorphous
artifact filter removes any connected component whose pixel
area is less than a threshold (60 pixels in this research) [9].
The Niblack [14] 4+ Yanowitz and Bruckstein method [11] was
found to be the best combination strategy by Trier and Taxt
[10]. The Shi and Govindaraju method is an image enhance-
ment strategy that has been used on postal mail-pieces [19].

4. Proposed algorithm

Prior algorithms have relied on techniques such as histogram
analysis, edge detection, and local measurements. However,
these techniques are less effective on medical forms. Our al-
gorithm uses a larger central N x N mask, which determines
the intensity of one region, and compares it with the intensi-
ties of multiple dynamically-moving smaller P x P masks (see
Figs. 5, 6 and 7).

One hypothesis in managing the varying intensities of the
carbon mesh and its similarities with the stroke is to use a
wave trajectory (see Figs. 6 and 7) for the D8 positioned masks
(see Fig. 5), as opposed to a linear trajectory (see Fig. 8). A
wave/trajectory is a path, in a Cartesian system, that undulates
across an axis in 2D space with an amplitude and frequency
that can be adjusted (see Fig. 6). The experiments illustrate
that the use of a wave trajectory is beneficial for the following
reasons: (i) There is a better chance of the trajectory of the mask
to evade a stroke. (ii) The possibility of finding a background
region as close as possible to the central mask is enhanced.
Note that as one goes further out from the center mask, the
more likely it is to find that the carbon mesh of the background
can change. (iii) The best background region to compare to a
handwriting stroke may or may not be the edge of the stroke.

5x5 Central Region (v)
3x3 Outer Regions (w;)

[ | A (o) region that has a lighter mean intensity than (v)
(| A (o) region that has a darker mean intensity than (v)

Fig. 5. Initial mask placement example (N =5 and P = 3).
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Fig. 8. Linear trajectory.

(iv) Areas surrounding a stroke in the same trajectory can be
observed. (v) Eight points of comparison, one for each trajec-
tory, are performed (as opposed to one point used on other al-
gorithms). With the inclusion of a stopping condition operating
independently on each trajectory, this approach, as opposed to
other global and adaptive approaches, does not get confined to
square mask windows which are relative to a central position.

In this context, the wave trajectory for scanning can be thought
of as searching for lighter pockets in the intensity fluctuation
of the carbon mesh (see Figs. 6 and 7).

A sine wave trajectory offers the benefit of beginning at the
origin and allowing a continuous trajectory regardless of dis-
tance (i.e. the wave will continue until the stopping condition is
met as opposed to being confined to an arbitrary box). It allows
the control of frequency and amplitude that is necessary to ad-
just for stroke width. Sinusoidal waves have been used in other
contexts for the modeling of human motor function for on-line
handwriting recognition, feature extraction and segmentation
[20], shape normalization of Chinese characters [21], and sig-
nal canceling of pathological tremors while writing [22]. Based
on these studies, and the knowledge of the English character
set, it was possible to scan out from a character stroke at a
certain frequency. This allows a handwriting stroke to be ma-
neuvered, as opposed to traced, in the search for background
regions. The sine trajectory can be thought of as a path which
has the potential to cross handwritten strokes. This allows the
background paper on both sides of the stroke, in all directions,
and with a dynamic distance, to be evaluated. Intuitively, more
space can be searched and both sides of the stroke can be eval-
uated in the same computational step at variable distances. It is
also presumed that in a moving ambulance, carbon smearing is
more likely since the writer will press harder on the document
to maintain balance in the vehicle. While strokes in the English
language contain both curves and straight lines, at the pixel
level they can be considered piecewise linear movements such
that a linear scan will trace the stroke and reduce the likelihood
of finding the background. Furthermore, holistic features (such
as the area in the letter “D”) are typically small. Missing the
carbon paper inside such character holes may result in missed
background analysis. This motivated the use of a higher sine
wave frequency so that the trajectory would pass through the
center of holistic features as frequently as possible. Addition-
ally, since the thickness of characters fluctuates, it is difficult
to precisely calculate the true stroke width.

A grayscale image 0 (black) to 255 (white) is the input, and a
binarized image is the output. At a given position on the image,
there are 9 masks. A single mask is denoted as =. The mean
intensity of all pixels within a single mask is denoted by M(Z).
The central mask which slides across the image is denoted by
(v) and has a size N x N, such that N >3 and consists of nu-
merically odd dimensions (e.g. 3 x 3,5 x5, and 7 x 7). The size
of (v) is based on the estimated stroke width constant denoted
by ¢. The value of ¢ has been estimated to be 5 pixels (the
estimated stroke width which may be dependent on the writing
instruments), therefore (v) is of size 5 x 5. At each (v) posi-
tion over the image, 8 masks are initially stationed in each D8
position (Fig. 5) and are denoted by (®;) where 1 <i<8. The
mask size of (w;) is P x P such that 3< P <[N/2]. Note that
P <[N/2] allows a small mask the opportunity of preserving
small holistic features when moving on the sine curve, and also
making sure that the mask will not overlap (v). Each (w;) is
initially stationed as close to (v) as possible so as to avoid the
mask overlapping between (w;) and (v). Each (®;) moves in its
respective D8 direction, either linearly (see Fig. 8), randomly
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" ) Classified as
foreground or &
background

Fig. 9. Random trajectory.

(see Fig. 9) or via a sinusoidal wave (see Fig. 6). The M (®;) is
computed at each position along the trajectory and stops at a po-
sition after one cycle and when the current mask average inten-
sity is lighter than the previous one on the sine trajectory. A list
of mean values for each position on that trajectory is denoted by
M(w;), where g is a coordinate on the sine curve. The lowest
intensity mask on a single sine wave trajectory is represented
by the equation M (®; )y, = min(M (co,')vq). Next, a compari-
son of all the D8 M (®;)yn positions are made against M (v).
If there are 3—4 (empirically determined using either LDWR
performance tests or majority voting) of the 8 M (w;) i, values
which satisfy the equation M (w;)yin — M (v) 2 K, such that k is
a small constant (using x = 10), then the center pixel of (v) is
classified as a foreground pixel. The value x defines a tolerance
with respect to the localized intensity fluctuation of the carbon
paper and denotes the carbon intensity similarity rule. Given
that a new image has been initialized to white background pix-
els, it is only necessary to mark the foreground pixels when
they are found. A dynamic programming step is used to store
each M (w;), corresponding to the appropriate region on the
image beforehand, to improve the run-time performance.
The sinusoidal trajectory is defined by Eq. (1).

y =2¢sin(3x). )

The coordinate (x, y), on a sinusoidal trajectory is relative to
its starting location (origin). A nearest neighbor approach is suf-
ficient for conversion of real coordinates to pixel coordinates.
Each w; is computed on the sine curve trajectory (see Figs. 6
and 7). Note that using ¢ as the amplitude in Eq. (1), without
the coefficient, will result in a distance of 2¢ between the high-
est and lowest y-axis points (using ¢ as the stroke width). In
addition, using 2¢ as the amplitude yields a distance of 4 times
the stroke width, to account for the possibility of 2 touching
strokes (i.e. two touching letters). In this way, the curve effi-
ciently exits a stroke while searching for the background. The
constant % is used in Eq. (1) so that the sine frequency does
not trace the handwritten stroke. The objective of the empiri-
cally chosen constant is to maximally evade the stroke. Since
the stroke pixels are not known in advance, nor easily approx-
imated, choosing a constant is situation dependent. As a gen-

Fig. 11. Sliding circular window.

Stable peias
t, Stable pelds

Fig. 12. Window binarization examples: (a) sliding square window (b) sliding
circular window.

ﬁ

eral rule, the optimal constant will result in the highest LDWR
recognition performance on known sample sets.

One alternative approach to the sinusoidal approach would
be to search for the lightest mean intensity mask within a slid-
ing window that is the same distance as one complete cycle
of the sinusoidal wave. Figs. 10 and 11, illustrate the window
structures and Fig. 12 shows the output. The procedure for
computing these window structures is to calculate the intensity
average of all 3 x 3 masks within a window. It is then possible
to compare the lightest of these averaged intensity masks with
the average intensity of the central 5 x 5 mask. However, only a
single mask value within the window is compared to the central
mask which requires x (as defined above) to be larger (x = 30
in Fig. 12) resulting in a completely black image. This is due
to the larger area of coverage which increases the likelihood
that a lighter area will always be found relative to the center
mask, thereby classifying the area as foreground. In addition,
there is a degradation of holistic features, close-proximity char-
acters combining and more broken characters than in the sine
wave approach (see Section 5 results). This requires x to be
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based on the image. The sine wave approach rarely suffers from
this situation since at least 3 of the trajectories authenticate a
foreground value instead of one value. Therefore, the carbon
intensity similarity rule breaks down, and causes the effective-
ness of these sliding window approaches to be as problematic
as a global thresholding technique. In this way, k becomes the
global threshold.

Another possible approach computes the Otsu [13] algorithm
in small windows rather than over the entire image. However,
this results in an output image nearly identical to that obtained
by computing Otsu [13] globally. The thresholds chosen are
negligibly different between windows and, therefore, the image
is still noisy and many strokes are still broken.

An alternate strategy to the sine wave is a randomized mask
movement (Fig. 9). Instead of the outer masks moving on the
sine wave trajectory, they move on the y-axis randomly within
the same rectangular area of the sine wave movement. It may be
expected that the randomized version (see Fig. 9) will perform
as well as the sine wave. However, since the window involved
in the sine wave trajectories is reasonably small, if a stroke is
present within that window, and the randomized approach is
used, there is no guarantee that the stroke will be evaded. There-
fore, if a random position is chosen, and that rests on a stroke
as opposed to the background, then the desired background po-
sition is missed. The sine wave approach is more likely to cross
the stroke rather than tracing it. Furthermore, due to the nature
of randomized approaches, the recognition results may not be
consistent.

5. Results

All experiments (see Fig. 13) were performed on a set of 62
PCRs consisting of ~ 3000 word images and various size lexi-
cons (see Figs. 16 and 17). The linear, random, square and circu-
lar strategies (see Figs. 8—12) were outperformed by Otsu [13].
The sine wave strategy presented here outperformed all prior
algorithms, with a 11-31% improvement. After post-processing
there was a 4.5-7.25% improvement (see Figs. 16 and 17).

[ Original Image |  Smoothing Operation |

Gatos/Pratikakis/Peranfonis
Kamel/Zhao
Niblack

— Otsu
Sauvola
WuManmatha
Proposed Algorithm
T

v

Shi/Govindaraju
Yanowitz/Bruckstein

v

Despeckel v

E:\;‘;%gﬁ"gi?t‘:_l —»|  Final Processed Image |

Amorphous Filter

A

Fig. 13. Image processing combinations.

Fig. 14. Comparison of binarization algorithms only: (a) original image
(b) original image with form drop out (c) Wu/Manmatha binarization (d)
Kamel/Zhao binarization (e) Niblack binarization (f) Sauvola binarization (g)
Otsu binarization (h) Gatos/Pratikakis/Perantonis binarization (i) sine wave
binarization.

.\l- l-.
d“_ﬂ*;"ﬂ\_‘..t \{l l-f.”' ”H:,A

Rl “f up TZU) 22S
"aba, it stabke mus—
Iabl it stable el
bl 3t Stable peiuts

Al It Stahle peluts

Fig. 15. Comparison of binarization algorithms with their best post-processing
strategy: (a) original image (b) original image with form drop
out (c) Wu/Manmatha binarization + Shi/Govindaraju + Despeckel (d)
Kamel/Zhao binarization + Shi/Govindaraju + Despeckel + amorphous
filler (e) Niblack binarization 4+ Despeckel + amorphous filter (f)
Sauvola Binarization + Yanowitz/Bruckstein + Despeckel (g) Otsu
binarization + Despeckel 4 blob removal (h) Gatos/Pratikakis/Perantonis
binarization 4+ Despeckel + amorphous filter (i) sine wave binarization +
amorphous filter.
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The handwriting phrase depicted in Figs. 14 and 15, “abd
snt, stable pelvis” means “abdominal soft-not-tender, stable
pelvis.” Figs. 14 and 16 show the performance of the aforemen-
tioned binarization strategies with no post-processing support.
Figs. 15 and 17 reflect the performance of the best respective
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Fig. 17. Binarization + post-processing performance.

post-processing combinations from Fig. 13.

With respect to Figs. 16 (maximum y-axis value is 50% for
visual clarity) and 17 (maximum y-axis value is 70% for visual
clarity), the y-axis represents the percentage of correctly rec-
ognized words by the LDWR [6] versus the lexicon size on the
x-axis. It is expected that the performance decreases with an in-
crease in lexicon size since the LDWR [6] is lexicon driven and,
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therefore, has more choices from which to select. The definition
of correctly recognized words is in the context of raw recog-
nition performance. The error rate is consistently high in this
application. Furthermore, words in the form region were manu-
ally segmented. The LDWR [6] algorithm uses pre-processing
strategies for its own noise removal and smoothing before ex-
ecuting its recognition algorithm [6,23,24]. Therefore, a noisy
image submitted to the LDWR algorithm will be internally
pre-processed by the handwriting recognizer. The first letter of
an author’s name is used to refer to the algorithms: (G)atos,
(K)amel, (N)iblack, (O)tsu, (S)auvola, (W)u. (SW) designates
Sine Wave binarization.

6. Conclusions

In this paper we have described a binarization algorithm
for handling carbon paper medical documents. Improve-
ments of approximately 11-31% (using various lexicon
sizes) have been obtained over prior binarization algorithms.
Approximately 4.5-7.25% improvement is obtained with
post-processing.
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