
Use of Lexicon Density in Evaluating
Word Recognizers

Venu Govindaraju, Senior Member, IEEE, Petr SlavõÂk, and Hanhong Xue, Student Member, IEEE

AbstractÐWe have developed the notion of lexicon density as a metric to measure the expected accuracy of handwritten word

recognizers. Thus far, researchers have used the size of the lexicon as a gauge for the difficulty of the handwritten word recognition

task. For example, the literature mentions recognizers with accuracy for lexicons of sizes 10, 100, 1,000, and so forth, implying that the

difficulty of the task increases (and, hence, recognition accuracy decreases) with increasing lexicon sizes across recognizers. Lexicon

density is an alternate measure which is quite dependent on the recognizer. There are many applications such as address

interpretation where such a recognizer dependent measure can be useful. We have conducted experiments with two different types of

recognizers. A segmentation-based and a grapheme-based recognizer have been selected to show how the measure of lexicon

density can be developed in general for any recognizer. Experimental results show that the lexicon density measure described is more

suitable than lexicon size or a simple string edit distance.

Index TermsÐClassifier combination, handwritten word recognizer, lexicon density, performance prediction, edit distances.

æ

1 INTRODUCTION

THE task of word recognition is described as follows: Given
an input word image and a lexicon of possible choices, the

word recognizer must rank the lexicon in descending order of
preference. The preference characterizes the ªgoodness of
matchº between the input image and a lexicon entry. Lexicon
size has been the commonly used measure to categorize the
difficulty of a recognizer's task [1].

Researchers have correctly observed that recognizers
have more difficulty with large lexicons. The reason for this
observation is simpleÐwhen lexicons are large, their entries
are more likely to be ªsimilar.º The ability of a recognizer to
distinguish among the entries in a lexicon clearly depends
on how ªsimilarº the lexicon entries are. The ªsimilarityº
among entries depends not only on the entries themselves
but also on the recognizer.

Table 1 presents two lexicons of equal size (i.e., 5).
However, the two lexicons present differing degrees of
difficulty to the recognizers depending on the features they
use. Assume, for example, that we have a word recognizer
that recognizes only the first character of each word.
Accuracy of such a recognizer is expected to be poor on a
lexicon where all entries start with the same letter (Lexicon 2)
and good on lexicons where starting letters of all entries are
different (Lexicon 1). Similarly, a recognizer that estimates the
length of each word performs well on lexicons where entries
differ significantly in their length (Lexicon 2) and poorly on
lexicons with entries of the same length (Lexicon 1).

We propose to address the relation between the difficulty
posed by a lexicon and the features of the recognizer used.

We will call the new measure that describes this relation-
ship ªLexicon Densityº or LD.

Central to the notion of lexicon density is the concept of
ªdistanceº between handwritten words. Distance between
two words is usually measured in terms of the total cost of
edit operations that are needed to transform one word into
the other one. Previously, computing of such a distance was
motivated by three edit operations: 1) replacement of one
character by another character, 2) deletion of a single
character, and 3) insertion of a single character [4] (where
a replacement operation can be performed by a deletion
followed by an insertion). While these edit operations are
well-suited for applications where the characters in a string
are nicely isolated (as in good quality machine printed text),
they are inadequate in modeling applications with hand-
written words. Additional operations that allow for mer-
ging and splitting of characters are necessary. We develop
in this paper a new distance metric, called the slice distance
(see Section 5), for this purpose.

A pertinent application with dynamically generated
lexicons is presented by the street name recognition task
in Handwritten Address Interpretation (HWAI). Here,
lexicons are generally comprised of street name candidates
generated from the knowledge of the zip code and the street
number. Every instance of an address can have a different
zip code and street number. Hence, every invocation of the
word recognizer is presented with a different lexicon. For
example, the zip code 60120 and street number 1121
produces a lexicon of 11 street names whereas the zip code
45405 and street number 3329 produces a lexicon of 2 street
names. In fact, it is in such cases that the notion of lexicon
density holds the greatest promise. If there are several
recognizers to choose from, there should be a control
mechanism that dynamically determines in any given
instance which recognizer must be used. The determination
can be based on the quality of the image, the time available,
and the lexicon density. It could be decided, for instance,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002 789

. The authors are with the Center for Excellence in Document Analysis and
Recognition (CEDAR), Department of Computer Science and Engineering,
State University of New York at Buffalo (SUNY), Amherst, NY 14228.
E-mail: govind@cedar.buffalo.edu.

Manuscript received 18 July 2000; revised 4 June 2001; accepted 22 Oct. 2001.
Recommended for acceptance by T.K. Ho.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112535.

0162-8828/02/$17.00 ß 2002 IEEE

that, if the image is noisy a particular recognizer should be
favored based on training data. Similarly, a specific
recognizer might be rendered ineffective if the lexicon
density is high from the recognizer's viewpoint. This could
happen if the recognizer depends heavily on a feature, say
the length, and all the lexical entries have the same length.

Another possible use of lexicon density is in evaluating
recognition results. Imagine that we have to assign some
confidence to the first choice. We could compare the
matching scores of the first and second choices to determine
how confident the recognizer is in its response. It would
however be more meaningful to also consider how likely it
is for the top few choices to be confused by the recognizer,
i.e., compute the ªlocalº density.

2 PREVIOUS WORK

Hamming in 1982 [2], defined the distance between two
strings of equal length as the number of symbol positions at
which they differ. This is like finding the minimum cost of
transforming one string into another by using only substitu-
tion operations of equal cost. The Levenshtein metric [4]
allows for insertions and deletions and can handle strings of
variable length.

Computing distances between two strings using dy-
namic programming has been independently discovered by
several researchers [6]. Wagner and Fisher [7] describe a
dynamic program that computes the minimum edit dis-
tance between two ASCII strings as the cost of a cheapest
ªtraceº of the three elementary edit operations. Intuitively, a
trace is a special sequence of elementary edit operations that
transforms the first string into the second, while requiring
at most one edit operation per character and enforcing a
strict left-to-right order of elementary edit operations [7].
Under the assumption that the cost of elementary edit
operations satisfy the triangle inequality, Wagner and
Fisher have proven that the cost of the cheapest trace is
indeed the same as the cost of the cheapest sequence of
elementary edit operations.

Seni et al. [5] have studied the problem of finding the
minimum edit distance between handwritten words by
considering additional edit operations: substitution of a pair
of characters, merge of two characters into one, and a split of
one character into two. Similar to the work of Wagner and
Fisher [7], Seni et al. computed the elm edit distance as the
cost of the cheapest trace. The costs of elementary edit

operations were determined empirically by observing
samples of handwritten characters and examples of mis-
recognition. Based on these observations, the authors decide
whether an elementary transformation is VERY LIKELY,
LIKELY, UNLIKELY, or IMPOSSIBLE and then assigned a
(rather arbitrary) cost to each edit operation based on the
type of operation and the level of likelihood. According to
Seni et al., the weights of the elementary transformations
are independent of any particular recognizer and the
generalized edit distance represents a generic measure of
possible confusion between two handwritten words.

While the additional edit operations accounts for some of
the errors in handwriting recognition (like confusing ªclº
and ªdº), it is still not general enough to explain errors such
as the confusion of ªrstº with ªonº in Fig. 4. We describe in
this paper the slice distance which adequately addresses the
typical misrecognitions of handwritten words and phrases.

3 LEXICON DENSITY

Distance between ASCII words (w1 and w2) with respect to
a given recognizer is central to the definition of LD. It
reflects the propensity of confusing words w1 and w2. To
determine a distance that captures this notion is relatively
easy for a holistic recognizer that treats the entire word as a
single object. One simply computes in the feature space of
all recognizable words, the distances between all prototypes
of w1 and all prototypes of w2 and defines the distance
between w1 and w2 as minimum (or average) of all such
feature distances.

The speech recognition community realized the need for
such a measure and defined the notion of perplexity [1] as
the expected number of branches (possible choices of the
next event) in a stochastic process. It is possible to compute
a similar quantity for our purpose. One would use the given
lexicon to build a prefix tree and calculate the average
branching factor. This will yield another possible measure
for evaluating word recognizers and would be a competing
alternative to lexicon density. However, it would be
somewhat inadequate as it would favor words sharing
prefixes and ignore those sharing suffixes.

The methodology for defining LD is nontrivial when
dealing with segmentation based recognizers, where each
letter is considered a separate entity. One possibility is to
use the minimum edit distance between w1 and w2 [7].
However, this approach is limited to cases where recogni-
zers are able to correctly segment a word image into
characters without having to recognize the characters first,
as is the case with recognizers in the machine print domain.
One uses samples of training words and training characters
to determine the cost of elementary edit operations
(deletion, insertion, and substitution) with respect to a
given recognizer. This paper is focused on handwritten
words where it is usually not possible to segment the word
into its constituent characters unambiguously.

Given a word recognizer R, we denote by dR�w1; w2� the
distance between two ASCII words w1 and w2. The distance
is image independent and recognizer dependent. It is
supposed to measure the propensity of confusing words
w1 and w2 by recognizer R. We will define dR in Section 5.
Clearly, if words are ªcloserº the density should be large.

790 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

TABLE 1
Recognizer 1 Recognizes only the First Characters of Words

Recognizer 2 only Counts the Number of Characters in Words

Lexicon 1 is favorable to Recognizer 1 (less dense) and Lexicon 2 is
favorable to Recognizer 2.

Given a recognizer R and a lexicon L of words
w1; . . . ; wn, lexicon density is defined as

�R�L� � vR�L��fR�n� � �R�;
where

vR�L� � n�nÿ 1�P
i 6�j dR�wi; wj�

is the reciprocal of the average distance between word pairs,n
the lexicon size, fR�n� an increasing function of n, and �r a
recognizer dependent constant. The use of �R allows easy
examination of sets of functions for fR�n�. For example, ln n

2 �
lnnÿ ln 2 can be easily examined by letting �R � ln 2.

The performance pR�L� of recognizer R on lexicon L
changes approximately linearly with lexicon density �R�L�,
which means there exist some a and c such that a�R�L� �
c � pR�L� approximately holds. Consider the square error
of the approximation over a set of lexicons ÿ.

ER �
X
L2ÿ

ÿ
a vR�L�fR�n� � a vR�L��R � cÿ pR�L�

�2
: �1�

We minimize the square error ER by selecting fR�n� and �R.
Suppose fR�n� is already known. The minimization of ER
can be obtained by letting b � a�R and finding the solution
for the following linear equations,

@E
@a � 2 a

P
v2f2 � bP v2f � cP vf ÿP vfp� � � 0

@E
@b � 2 a

P
v2f � bP v2 � cP vÿP vp� � � 0

@E
@c � 2 a

P
vf � bP v� cP 1ÿP p� � � 0;

8<:
which is equivalent to a multiple regression problem
(subscripts R have been omitted for better readability).
Therefore, the first step is to determine the proper fR�n� and
the second step is to determine �R given fR�n�. We will
consider two sets of functions, ffR�n� � lnpnjpg and
ffR�n� � npjpg.

4 WORD RECOGNIZERS

We will use two word recognizers for illustration. The first
recognizer is a segmentation based word recognizer [3]
(Fig. 1), henceforth referred to as WR-1. The second
recognizer is a grapheme-based recognizer which simply
extracts and recognizes certain subcharacter features with-
out any explicit character segmentation [8] (Fig. 3).
Henceforth, this recognizer will be referred to as WR-2.

Given an image of handwritten word, WR-1 segments
the word at potential character boundaries. An over-
segmentation strategy is used wherein it is acceptable if a
character is segmented into subcharacters (oversegmenta-
tion) but no two characters should remain connected after
the segmentation process (Fig. 2). It is assumed that the
segmentation process never segments a character into more
than four parts. A graph is obtained where each segment is
a node. Possible traversals of this graph through all the
nodes constitute various interpretations of the segments.
Instead of passing on combinations of segments to a generic
OCR, lexicon is brought into play early in the process. A
combination of adjacent segments (up to a maximum of 4)
are compared to only those character choices which are

possible at the position in the word being considered. The
approach can be viewed as a process of accounting for all
the segments generated by a given lexicon entry. Lexicon
entries are ordered according to the ªgoodnessº of match.

WR-2 can be briefly described as follows: Suppose � is
the set of all possible features. A character model is an
automaton M �< S; T ; l; �; � > , where

. S is a finite set of states.

. T � S � S is the set of transition arcs.

. l : S ! � is the labeling function.

. � � S is the set of starting states.

. � � S is the set of accepting states.

Character models are concatenated to obtain word models.
Suppose a word consists of N1 characters with correspond-
ing character models mi � < Si; Ti; li; �i; �i >; 1 � i � N .
The word model M � < S; T ; l; �; � > is defined as follows:

. S � [Ni�1Si.

. T � [Ni�1Ti
ÿ � [[Nÿ1

i�1 �i � �i�1

ÿ �
.

. l�x� � li�x� if x 2 Si.

. � � �1.

. � � �N .

During recognition, the input feature sequence, which can be
viewed as a degraded automaton, is matched against word
models one by one using the same dynamic programming
procedure described in Section 5.1.2.

5 COMPUTATION OF DISTANCE, dR
The definition of LD depends on the word recognizer. In the
following sections, we will describe the computation of the
distance dR for the two recognizers WR-1 and WR-2.
Henceforth, we will call the distances corresponding to
WR-1 as ªslice distanceº and the distance corresponding to
WR-2 as ªgrapheme distance.º Based on our illustrations, it
should be apparent to the reader that dR can be computed
for any given word recognizer based on an understanding
of its methodology. It should be also noted that for a word

GOVINDARAJU ET AL.: USE OF LEXICON DENSITY IN EVALUATING WORD RECOGNIZERS 791

1. We are using n for the size of a lexicon and N for the number of
characters in a word.

Fig. 1. Segmentation-based recognizer, WR-1.

recognizer whose methodology uses character segmenta-
tion (such as WR-1) the process of computing the distance
dR is more involved when compared to recognizers that do
not rely on character segmentation (such as WR-2). This is
primarily because it is the process of character segmentation
that adds the operations of splitting and merging characters
to the standard string edit operations.

5.1 Slice Distance dR for WR-1

Assume that WR-1 is presented with a word image (Fig. 2)
and the lexicon consists of just two entriesÐªWilsonº and
ªAmherst.º After dynamically checking all the possible
segment combinations, WR-1 would correctly determine
that the best way to match the image and the word ªWilsonº
is to match segments 1-4 with ªW,º segment 5 with ªi,º
segment 6 with ªl,º etc. The best way to match the image
against ªAmherstº would be to match segment 1 with ºA,º
segments 2-5 with ªm,º segment 6 with ªh,º segment 7 with
ªe,º segment 8-9 with ªr,º segment 10 with ªs,º and,
finally, segment 11 with ªt,º (Fig. 4). The score of the
second matching would be lower than the score of the first
matching leading to the recognizer correctly choosing
ªWilsonº as its first choice.

Fig. 4 illustrates how confusions could possibly arise in
determining the best possible answer. Letter ºAº was
matched with the same slice of the image as the left part
of letter ºW,º left part of letter ºmº was matched with the

same ªsliceº of the image as the right part of ºW,º right part
of letter ºmº was matched with the same slice of the image
as letter ºi,º etc. Hence, to determine the propensity of
confusing ªWilsonº and ªAmherst,º we have to first
determine the propensity of confusing ºAº with the left
part of ºW,º left part of ºmº with the right part of ºW,º right
part of ºmº with a complete letter ºi,º and so forth. In
general, we need to determine the propensity of confusing a
slice of one character with a slice of another character.
Furthermore, since the slice distance is image independent,
we have to consider all the possible ways of confusing slices
of characters over all writing styles. In other words, we have
to consider all possible segmentation points that can occur
in any image of a given word and all possible ways of
matching them with lexicon entries. Then we choose the
worst-case scenario (i.e., the smallest distance) among all
possible combinations. This measure depends ultimately on
the distance between character ªslices.º

Computation of the slice distance involves the following
two steps: 1) determining the elementary distances between
all meaningful slices of characters and 2) using these
elementary distances as weights in a dynamic program that
computes the slice distance between any two ASCII words.

5.1.1 Elementary Distances

Elementary distances between slices of different characters
are computed during the training phase of WR-1 and stored
in several 26 by 26 confusion matrices. These matrices are a
natural generalization of confusion matrices between
complete characters.

During training, WR-1 is presented with several thou-
sand images of handwritten words. WR-1 oversegments
each image and the elementary segments are then manually
combined into complete characters. These characters then
serve as character templates.2

The training program not only stores the complete
characters, but also all the slices. Slice is a part of a character
consisting of several consecutive segments. Each slice is
stored together with the information about the parent
character class, number of segments in the slice, and the part
of the character being considered (left, right, or middle).

792 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

2. To be precise, characters are first clustered based on the similarity of
their features. Then, for each cluster, the average of all characters in that
cluster is used as template.

Fig. 2. Segmented handwritten image in contour representation and corresponding graph. Details of the method can be seen in [2].

Fig. 3. Grapheme-based recognizer, WR-2.

The slices are used to compute all meaningful elemen-
tary distances. For example, to compute the elementary
distance between the left part of ºAº and the right part of
ºBº such that both consist of exactly two elementary
segments, distances between all 2-segment left slices of
ºAº and all 2-segment right slices of ºBº are computed, and
the elementary distance is set to their minimum.

Since WR-1 allows between 1 and 4 elementary segments
per character, for each character, we have extracted left and
right slices of 1 to 3 elementary segments, middle slices of 1
and 2 segments (from characters of size 3 and 4, respec-
tively), and 1-segment middle-left and middle-right slices
(from characters of size 4). Using such slices, we compute
17 26 x 26 confusion matrices.

. SS1, SS2, SS3, SS4: elementary distances between
complete characters of sizes 1, 2, 3, and 4, segments,
respectively;

. LR1, LR2, LR3: elementary distances between left
slices and right slices of sizes 1, 2, and 3, segments,
respectively;

. LS1, LS2, LS3: elementary distances between left
slices and complete characters of sizes 1, 2, and 3,
segments, respectively;

. RS1, RS2, RS3: elementary distances between right
slices and complete characters of sizes 1, 2, and 3,
segments, respectively;

. MS1, MS2: elementary distances between middle
slices and complete characters of sizes 1, and 2,
segments, respectively;

. LMS, RMS: elementary distances between left and
right middle slices and complete characters of size 1
segment.

Note, that there is no point computing distances like
RM1, LL2, etc. If, for example, right part of one character is
being confused with a middle part of another character,
both parts can be ªextendedº to the left, to get one of the
following three cases already covered by the elementary
distancesÐRLi, SMi, or SLi, where i � 2.

Definitions. A hypothetical word image in the context of
the discussions in this paper, refers to the following two
parts of a word image: the chosen form of the word and its
chosen segmentation. Thus, a hypothetical image can
potentially represent a word image of any form and any
segmentation. The number of forms in which an image of a
word can appear is infinite. However, the possible
segmentations are limited by the assumptions made by
the word recognizer under consideration. For example, both
WR-1 and WR-2 guarantee that a single character is split
into at most four characters and no two characters are left
merged by the segmentation methodology. This assumption

limits the possible segmentations of a word image. We
assume that in a hypothetical image all the forms of a word
are equivalent as long as their segmentations do not differ.

The Elementary Slice Distance is the minimum (Euclidean)
distance between feature vectors of slices of character
templates obtained during the training phase.

The Base Slice Distance is the sum of elementary distances
between character slices for a particular way of confusing two
ASCII words. We use hypothetical images of a particular
number of segments and a particular way of matching these
segments with individual characters for this purpose.

The Slice Distance between words w1 and w2 is the
minimum over all possible base distances considering all
possible ways of segmenting a hypothetical image and all
possible ways of matching segments with individual
characters.

We denote the minimum slice distance between two
ASCII words w1 and w2 by msd�w1; w2�.
5.1.2 Dynamic Program

Checking all the possible ways of confusing words w1
and w2 is not very efficient. Fortunately, there is a
dynamic program that computes the slice distance in time
O�jw1j � jw2j � �jw1j � jw2j��.

Let us first define some concepts needed to describe the
dynamic program. Given words w1 and w2, we denote by
n1 and n2 the number of characters in each word, i.e., n1 �
jw1j and n2 � jw2j. We denote by ci the ith character of
word w1 and by dj the jth character of word w2. Hence,
w1 � c1c2 . . . cn1 and w2 � d1d2 . . . dn2. We denote by max K

the maximum number of segments of a hypothetical image
matching both w1 and w2.

Let w be a word of n characters and let m be a matching
between w and a hypothetical image of K segments. We say
that ith character of word w ends at segment k if k is the last
segment of the supersegment that matches the ith character.
For a particular way of matching the word and the image,
we denote this ending segment by m�i�, 1 � i � n. Clearly
m�jwj� � K. Additionally, we define m�0� � 0.

Since WR-1 allows a complete character to match
between 1 and 4 consecutive segments of the image, 1 �
m�i� ÿm�iÿ 1� � 4 and max K � 4 �min�jw1j; jw2j�.

We store the partial results of our computation in the
following 3- or 4-dimensional matrices (i � 1; . . . ; n1,
j � 1; . . . ; n2, k � 1; . . . ; max K and e � 1; . . . ; 3):

fese[i][j][k]: The smallest possible distance between the
first k segments of word w1 and the first k segments of
word w2 under the condition k � m�i� � m�j�. The name
fese stands for ªfirst-even, second-even,º and corre-
sponds to those matchings where the ith and jth characters
of wordsw1 andw2 are aligned, i.e., their ending segments
coincide. For example, in Fig. 4, the cost of matching ªWiº
with ªAm,º is stored in fesc[2][2][5].

fesc[i][j][k][e]: The smallest possible distance between
the first k segments of word w1 and the first k segments of
word w2 under the condition k � m�i� � m�j� ÿ e. The
name fesc stands for ªfirst-even, second-cutº and
corresponds to those matchings where the ith character
ofw1 ends within jth character ofw2, and there are exactly
e segments of jth character left ªsticking outº beyond the
last segment of the ith character. For example, in Fig. 4, the

GOVINDARAJU ET AL.: USE OF LEXICON DENSITY IN EVALUATING WORD RECOGNIZERS 793

Fig. 4. Matching of ASCII words (from lexicon) with image.

cost of (partially) matching ªWilsoº with ªAmher,º is stored
in fesc[5][5][8][1].

fcse[i][j][k][e]: The smallest possible distance between
the first k segments of word w1 and the first k segments of
word w2 under the condition k � m�i� ÿ e � m�j�. The
name fcse stands for ªfirst-cut, second-evenº and
corresponds to those matchings where the jth character
of w2 ends within the ith character of w1, and there are
exactly e segments of ith character left ªsticking outº
beyond the last segment of jth character. For example, in
Fig. 4, the cost of (partially) matching ªWilsonº with
ªAmher,º would be stored as fcse[6][5][9][2].
Most of the elements of matrices fese� �� �� �, fesc� �� �� �� �,

and fcse� �� �� �� � do not contain meaningful values since
there are no images and matchings that satisfy the required
conditions. There are two ways of dealing with the situation.

1. Initialize all the elements of all the three matrices to
1 (with the exception of fese�0��0��0�) and then
compute all the elements starting with k � 1.

2. Limit the ranges of k, i, j, and e to meaningful
values, thus avoiding unnecessary computations.

Since most of the elements of matrices fese� �� �� �,
fesc� �� �� �� �, and fcse� �� �� �� � are meaningless, we have used
the second approach.

The dynamic program now consists of the following
three steps:

1. Initialization:

fese�0� �0� �0� � 0:

2. Compute the (meaningful) values of matrices
fese� �� �� �, fesc� �� �� �� �, and fcse� �� �� �� � for k seg-
ments (starting with k � 1, k � 2, up to k � max K)
from the (meaningful) values for kÿ 1, kÿ 2, kÿ 3,
and kÿ 4 segments using the following formulas:

fese�i��j��k� � min

minr�1;...;4 fese�iÿ 1��jÿ 1��kÿ r� � SSr�ci��dj�
minr�1;...;3 fesc�iÿ 1��j��kÿ r��r� � SRr�ci��dj�
minr�1;...;3 fcse�i��jÿ 1��kÿ r��r� � RSr�ci��dj�

8><>:
fesc�i��j��k��e� � min

minr�1;...;4ÿe fese�iÿ 1��jÿ 1��kÿ r� � SLr�ci��dj�
minr�1;...;4ÿe fcse�i��jÿ 1��kÿ r��r� � RLr�ci��dj�
minr�1;2 fesc�iÿ 1��j��kÿ r��r� SMr�ci��dj� for e � 1

fesc�iÿ 1��j��kÿ 1��1� � SMR�ci��dj� for e � 1

fesc�iÿ 1��j��kÿ 1��1� � SML�ci��dj� for e � 2:

8>>>>>><>>>>>>:
fcse�i��j��k��e� � min

minr�1;...;4ÿe fese�iÿ 1��jÿ 1��kÿ r� � LSr�ci��dj�
minr�1;...;4ÿe fesc�iÿ 1��j��kÿ r��r� � LRr�ci��dj�
minr�1;2 fcse�i��jÿ 1��kÿ r��r� � MSr�ci��dj� for e �1

fcse�i��jÿ 1��kÿ 1��1� � MRS�ci��dj� for e � 1

fcse�i��jÿ 1��kÿ 1��1� � MLS�ci��dj� for e � 2:

8>>>>>><>>>>>>:

3. Compute the minimum slice distance between w1
and w2. Assuming that we know all values in
matrices fese� �� �� �, fesc� �� �� �� �, and fcse� �� �� �� � the
slice distance between w1 and w2 is given by

msd�w1; w2� � min
k

fese�n1��n2��k�:

The formulas above are all straightforward and simply
enumerate all the possible ways of matching two characters
to the same parts of the image. Now what remains is to
provide the reader with the details of determining mean-
ingful ranges of i, j, k, and e.

Step 1: Determine the range of KÐthe total number of
elementary segments. Since WR-1 allows between 1 to 4
elementary segments per complete character, two words w1
and w2 can be possibly confused on a hypothetical image
that gets segmented by WR-1 into K segments, where

min K � max�jw1j; jw2j� � K � max K � 4 �min�jw1j; jw2j�:
If no such K exists (that is, min K > max K, one word is
more than times times longer than the other), we set
msd�w1; w2� � 1.

Step 2: Compute arrays ªmin dur� �º and ªmax dur� �.º
Given a word w with jwj � n and the values min K and
max K such that min K � n and max K � 4n, we define the
arrays min dur� � and max dur� � as

min dur�i� � min

m�i� m varies over all possible matchings between w

and K segments with min K � K � max K

����� �
and

max dur�i� � max

m�i� m varies over all possible matchings between w

and K segments with min K � K � max K

����� �
for i � 0; . . . ; n.

Given a word w and an image consisting of K
elementary segments, the last segment of the first character
can be segments 1, 2, 3, or 4; the last segment of the second
character can be segments 2, 3, . . . , up to segment 8,
etc. Hence, min dur�1� � 1, max dur�1� � 4, min dur�2� � 2,
max dur�2� � 8, etc. Similarly, the last segment of the last
character must be segment K, last segment of the previous
character can be any of the segments K ÿ 4, K ÿ 3, K ÿ 2, or
K ÿ 1, and so forth. Hence, min dur�n� � max dur�n� � K,
min dur�nÿ 1� � K ÿ 4, max dur�nÿ 1� � K ÿ 1, etc. All
this, assuming that the word is not too long or too short
compared to the number of elementary segments. If the
word is too short, many characters would have to contain
more than one segment, if the word is too long, many
characters would have to contain less than four segments.

The following are the formulas for arrays min dur� � and
max dur� �, given that K is in the range min K � K � max K

and jwj � n, with min K � n and max K � 4n.

min dur�i� � maxfi; min Kÿ 4 � �nÿ i�g
and

max dur�i� � minf4 � i; max Kÿ �nÿ i�g:

794 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Step 3: Compute arrays ªmin char� �º and ªmax char� �.º
Given a word w with jwj � n, variables min char�k� and
max char�k� for k � 0; . . . ; max K contain the ID of the first
and the last character of word w that can end at segment k.
In other words,

min char�k� � min

i j m�i� � k and m varies over all possible matchingsf g
and

max char�k� � max

i j m�i� � k and m varies over all possible matchingsf g:
Arrays min char� � and max char� � can be easily com-

puted using the formulas

min char�k� � i for max dur�iÿ 1� < k � max dur�i�;
max char�k� � iÿ 1 for min dur�iÿ 1� � k < min dur�i�:

Notice that min char�0� � max char�0� � 0.
It should be evident now that the values of ªfese�i��j��k�º

are meaningful only when 0 � k � max K,

min char1�k� � i � max char1�k�;
and

min char2�k� � j � max char2�k�;
the values of ªfesc�i��j��k��e�,º are meaningful only if 0 � k,
k� e � max K,

min char1�k� � i � max char1�k�;
and

min char2�k� e� � j � max char2�k� e�;
and similarly the values of ªfcse�i��j��k��e�,º are meaningful
only if 0 � k, k� e � max K,

min char1�k� e� � i � max char1�k� e�;
and

min char2�k� � j � max char2�k�:
It is now possible to compute the meaningful elements of

matrices ªfese� �� �� �º, ªfesc� �� �� �� �,º and ªfcse� �� �� �� �º for a
given k applying the formulas above only on the mean-
ingful elements for kÿ 1, kÿ 2, kÿ 3, and kÿ 4. In
particular, there is no need to initialize any values in the
matrices ªfesc� �� �� �� �º and ªfcse� �� �� �� �º since the first
segments of the first characters are always aligned.

5.1.3 Remarks

The word recognizer used [3] imposes variable limits on the
number of segments per character (Table 2). For example,
ªjº can have 1 or 2 segments, ªwº can have between 1 and 4
segments, etc. Thus, the ªrealº formulas for max K,
min dur� �, max char�k�, etc., are slightly more complicated
and different for each word. We have chosen not to
consider this variability in order to simplify our exposition.

Our slice distance is designed to quantify how likely it is
for two words to be confused by our recognizerÐthe larger

the distance between two words, the less likely they can be
confused. Thus, one expects to have a small distance
between words like ªiº and ªe,º and e and f (since they
could be easily confused by our recognizer), while a large
distance is expected between words i and f (since they do
not get easily confused).

5.2 Grapheme Distance dR for WR-2

Consider two words consisting of c1 and c2 characters,
respectively. Suppose their models are M1 � < S1; T1;
l1; �1; �1 > and M2 � < S2; T2; l2; �2; �2 > . A dynamic pro-
gramming table d�x; y� is built for x 2 S1 and y 2 S2.
d�x; y� � 0 w h e n f�x0; x� 2 T1g � ;; f�y0; y� 2 T2g � ;.

Otherwise,

d�x; y� � min
fd�x0; y� � s�l1�x�; ��j�x0; x� 2 T1g [
fd�x; y0� � s��; l2�y��j�y0; y� 2 T2g [
fd�x0; y0� � s�l1�x�; l2�y��j�x0; x� 2 T1; �y0; y� 2 T2g

0B@
1CA;

where s�f; g� is the predefined distance function between
feature f and feature g. s�l1�x�; �� is equivalent to the deletion
of l1�x� and s��; l2�y�� is equivalent to the deletion of l2�y�.

The final distance between the two word models is
defined as

dR�M1;M2� � min�fd�x; y�jx 2 ��M1�; y 2 ��M2�g�=N1;

which is normalized by the number of characters (N1) in the
first word and, thus, not symmetric.

6 EXPERIMENTS

We have designed a simple yet very effective procedure to
evaluate the dependence of the accuracy of a word
recognizer [3] on lexicon density as computed in this paper.
We used a set of 3,000 images from the CEDAR CDROM.
This set contains images of words extracted from hand-
written addresses on US mail and is used as a standard for
evaluating word recognizers.

For each image, we randomly generated 10 lexicons of
sizes 5, 10, 20, and 40. Each lexicon contains the truth (the
correct answer). For any specific size, the lexicons are
divided into 10 groups depending on their densityÐthe
most dense lexicons for each image were collected in the
first group, the second most dense lexicons for each image
were collected in the second group, and so forth. We have

GOVINDARAJU ET AL.: USE OF LEXICON DENSITY IN EVALUATING WORD RECOGNIZERS 795

TABLE 2
The Maximum Number of Segments Possible

for Different Characters Varies from 1 to 4
When Using the Segmenter of WR-1

tested the performance of the word recognizer on each of
these groups. Notice that such ordering of lexicons depends
on the definition of lexicon density �R�L� and the same
ordering will be obtained using vR�L�.

A natural alternative of lexicon density is a measure
based on the string edit distanceÐthe minimum number of
insertions, deletions and substitutions needed to change one
string to another. It is defined as

�R�L� � v�L��fR�n� � �R�;

where

v�L� � n�nÿ 1�P
i6�j d�wi; wj�

is the reciprocal of average edit distance between word
pairs.

Table 3 shows the performance of WR-1 and WR-2 on 40
different groups of lexicons, together with reciprocals of
average distances. The performance numbers are first choice
correct rates in percentage. Multiple regression is performed

796 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

TABLE 3
Performance of WR-1 and WR-2 on a Set of 3,000 Images with 40 Different Lexicons for Each Image

Three different groups of lexicons were considered: 1) ªedit distanceº based, 2) ªslice distanceº based, and 3) ªgrapheme distanceº based.

GOVINDARAJU ET AL.: USE OF LEXICON DENSITY IN EVALUATING WORD RECOGNIZERS 797

Fig. 5. The effect of fR�n� on the average square error for WR-1. Two sets of functions, ffR�n� � lnpnjpg and ffR�n� � npjpg are examined for ªslice

distanceº based and ªedit distanceº based lexicon densities.

Fig. 6. The effect of fR�n� on the average square error for WR-2. Two sets of functions, ffR�n� � lnpnjpg and ffR�n� � npjpg are examined for

ªgrapheme distanceº based and ªedit distanceº based lexicon densities.

798 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 7. Dependence of the performance of WR-1 on ªslice distanceº based lexicon density when fR�n� � lnn and �R � ÿ0:8432. The average square

error is 2.4693 (1).

Fig. 8. Dependence of the performance of WR-1 on ªedit distanceº based lexicon density when fR�n� � lnn and �R � ÿ0:4546. The average square

error is 4.6456 (1).

GOVINDARAJU ET AL.: USE OF LEXICON DENSITY IN EVALUATING WORD RECOGNIZERS 799

Fig. 9. Dependence of the performance of WR-2 on ªgrapheme distanceº based lexicon density when fR�n� � lnn and �R � 0:5298. The average

square error is 3.6086 (1).

Fig. 10. Dependence of the performance of WR-2 on ªedit distanceº based lexicon density when fR�n� � lnn and �R � ÿ0:6388. The average square

error is 5.0602 (1).

on this data set to discover the approximate linear depen-
dence between recognition performance and lexicon density.

In order to find evidence of preferring one fR�n� over

another, we consider two sets of functions, ffR�n� � lnpnjpg
and ffR�n� � npjpg. Figs. 5 and 6 show the average square

error (ER=jÿj after multiple regression computed from (1))

versus the power p, for WR-1 and WR-2, respectively. As

illustrated, the minimum error occurs around p � 1 for the

lnp n set and p � 0 for the np set. However, p � 0 implies

fR�n� � 1 and the problem degrades to linear regression

that consequently yields much larger error. (It can be easily

seen in Table 3 that there is no strong linear relation

between recognition accuracy and any reciprocal of average

distance.) The variation of error for the lnp n set is also less

sharp than that for np, which allows more accurate

estimation of performance when there is a small error in

choosing the best p. Based on the above analysis, we choose

fR�n� � lnn.
Figs. 7 and 8 show the best linear dependence of

recognition accuracy on lexicon density when fR�n� � lnn

for WR-1, with the corresponding (best) �R given. The

results here combined with Fig. 5 also show that the

recognizer dependent definition of lexicon density is

generally more accurate than the recognizer independent

one such as that based on string edit distance. Figs. 9 and 10

combined with Fig. 6 show similar results for WR-2.
The results seem to be conforming to the intuitive notion

of lexicon density we set out to define. Recognition accuracy

decreases with increasing lexicon density and if the density

is the same, although the lexicon sizes may be different, the

recognition accuracy stays about the same.

7 SUMMARY

In this paper, we present a new measure, LD to evaluate the

difficulty of a given lexicon with respect to a given

recognizer. Lexicon Density (LD) depends both on the

entries in the lexicon and on a given recognizer. Intuitively,

the higher the lexicon density the more difficult it is for the

recognizer to select the correct lexicon entry.
We have described how to compute the slice distance

between two ASCII words for a segmentation based

recognizer. Recognizers sometimes use probability mea-

sures instead of distances. For such recognizers, our

algorithm could easily be modified to output the probability

of confusing two words. It can be obtained by multiplying

the elementary probabilities of confusing character slices

(instead of adding the elementary distances) and then

maximizing (instead of minimizing) the total probability

over all possible slice-matchings.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues at CEDAR,

in particular Evie, Jaehwa, and Krasi, for numerous

discussions and feedback. We also got some very useful

suggestions from the anonymous reviewers.

REFERENCES

[1] L.R. Bahl, F. Jelinek, and R.L. Mercer, ªA Maximum Likelihood
Approach to Continuous Speech Recognition,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 5, no. 2, Mar. 1983.

[2] R. Hamming, Coding and Information Theory. Prentice Hall, 1982.
[3] G. Kim and V. Govindaraju, ªA Lexicon Driven Approach to

Handwritten Word Recognition for Real-Time Applications,º
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19,
no. 4, pp. 366-379, Apr. 1997.

[4] V.I. Levenshtein, ªBinary Codes Capable of Correcting Insertions,
Deletions, and Reversals,º Cybernetics and Control Theory, vol. 10,
no. 8, pp. 707-710, 1966.

[5] G. Seni, V. Kripasundar, and R.K. Srihari, ªGeneralizing Edit
Distance to Incorporate Domain Information: Handwritten Text
Recognition as a Case Study,º Pattern Recognition, vol. 29, no. 3,
pp. 405-414, 1996.

[6] G. Stepehen, String Searching Algorithms. World Scientific, 2000.
[7] R.A. Wagner and M.J. Fischer, ªThe String-to-String Correction

Problem,º J. ACM, vol. 21, no. 1, pp. 168-173, Jan. 1974.
[8] H. Xue and V. Govindaraju, ªHandwritten Word Recognition

Based on Structural Features and Stochastic Models,º Proc. Int'l
Conf. Document Analysis and Recognition, 2001.

Venu Govindaraju received the PhD degree in
computer science from the State University of
New York at Buffalo (SUNY) in 1992. He has
coauthored more than 120 technical papers in
various international journals and conferences
and has one US patent. He is currently the
associate director of Center for Excellence in
Document Analysis and Recognition (CEDAR)
and concurrently holds the associate professor-
ship in the Department of Computer Science and

Engineering, SUNY. He won the ICDAR Outstanding Young Investigator
Award in September 2001. He is the program cochair of the upcoming
International Workshop on Frontiers in Handwriting Recoignition in
2002. He is a senior member of the IEEE.

Petr SlavõÂk received the MS degree in computer
science and the PhD degree in mathematics
from the State University of New York at Buffalo
(SUNY) in 1998. From 1998 to 2000, he was a
research scientist at Center for Excellence in
Document Analysis and Recognition (CEDAR),
SUNY Buffalo, where he worked on offline
handwriting recognition. He is currently a mem-
eber of the online handwriting recognition team
at Microsoft Corporation. His resarch interests

include handwriting recognition, theory of algorithms, and combinatorial
optimization.

Hanhong Xue received the BS and MS degrees
in computer science from University of Science
and Technology of China, in 1995 and 1998,
respectively. He is currently pursuing the PhD
degree in computer science and engineering at
the State University of New York at Buffalo. His
research interests, include image processing,
pattern recognition and computer vision. He is a
student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

800 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

