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Use of Identification Trial Statistics for the
Combination of Biometric Matchers

Sergey Tulyakov and Venu Govindaraju, Fellow, IEEE

Abstract—Combination functions typically used in biometric
identification systems consider as input parameters only those
matching scores which are related to a single person in order
to derive a combined score for that person. We discuss how
such methods can be extended to utilize the matching scores
corresponding to all people. The proposed combination methods
account for dependencies between scores output by any single
participating matcher. Our experiments demonstrate the ad-
vantage of using such combination methods when dealing with
a large number of classes, as is the case with biometric person
identification systems. The experiments are performed on the
National Institute of Standards and Technology BSSR1 dataset
and the combination methods considered include the likelihood
ratio, neural network, and weighted sum.

Index Terms—Biometric identification systems, combination of
classifiers.

I. INTRODUCTION

IOMETRIC applications operate in two modes: 1) ver-
B ification (1:1) mode and 2) identification (1:N) mode.
Common approaches to combining biometrics for (1:N) iden-
tification applications are usually a simple iterative use of the
(1:1) verification system. The combined score assigned to a
particular enrolled person is obtained as a function of the scores
assigned to that person by all of the biometric matchers in
either mode of operation. However, in the identification mode,
additional information is available for deriving the combined
score for any person in the database of enrollees. This additional
information is available from the matching scores returned to
the enrollees other than the target person.

We consider M multiple biometric matchers used to produce
M N matching scores (Fig. 1), where V is the number of en-
rolled persons. We assume that M is small and /N is large. Each
biometric matcher in such a setting is equivalent to a classifier
assigning matching scores to each N class or person. And the
combination of biometric matchers can be viewed as a classifier
combination problem with a large number of classes.

Combination methods can be categorized based on the
construction properties of the combination functions f. When
methods use a single common combination function, they are
called class generic methods. When each class has its own com-
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Fig. 1. Set of scores available for combinations in identification systems in-
cludes all M N matching scores from A matchers and assigned to all N per-
sons. The combination functions f usually only utilize the set of scores related
to one person ¢ in order to calculate the combined matching score for this person.

bination function, so that the combined scores are calculated
differently for different classes, the methods are called class
specific.

Local methods take as parameters only the M match scores
related to a particular class (single column in Fig. 1) whereas
the global methods consider the whole set of M N match scores
(all columns in Fig. 1) to derive the combined score for any one
class. In this paper, we explore global methods whose combina-
tion functions use the additional information (all columns) when
computing the integrated score for each person.

When classifiers deal with a small number of classes, the de-
pendencies between the scores assigned to different classes can
be learned and used for combination purposes. For example, Xu
et al. [1] used class confusion matrices for deriving belief values
and integrated these values into combination algorithms in the
digit classification problem. This algorithm has class-specific
and global combination functions. It is the most general type of
combination method allowing optimal performance. However,
learning class dependencies requires a significant number of
training samples for each class. Such data might not be available
for the 1:N identification mode systems, where usually a single
template is enrolled for each person. In addition, the database
of enrolled persons can be frequently changed making learning
class relationships infeasible.

As a consequence, combination approaches in 1:N identifica-
tion systems have considered only the local methods even when
all of the M NN scores are available. In this paper, we investigate
the question of whether it is possible to improve the performance
of the identification system by using all of the M N matching
scores for deriving the combined score for each person [2], [3].

II. PREVIOUS WORK IN IDENTIFICATION
SYSTEM COMBINATIONS

Traditionally, two types of biometric person authentication
systems are defined: 1) verification (1:1) and 2) identification
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(1:N) systems. It is usually implied that verification systems
have only the matching scores related to one enrolled person
available to the combination method. However, it is possible
that a verification system additionally uses matching scores re-
lated to other people. For example, in [4], the authors performed
“identification based verification” by utilizing matching scores
of other enrolled peoples while making verification decisions on
a particular person.

In order to avoid confusion, we define an identification
system as a system which provides matching scores for all
N enrolled persons. As in [4], such systems can operate in
verification mode also. An identification system operates in
identification mode if its purpose is to classify an input as be-
longing to any of the [V classes or persons. We assume that the
classification decision is performed by applying the arg max
operator to the N combined scores

C = arg max S;.
1<i<N

The correct identification rate, that is, the frequency of correctly
finding the true class of the input, is the natural measure of per-
formance in this case, and we will use it in our experiments.
Note that there could be other performance measures for identi-
fication mode operation, such as rank probability mass and cu-
mulative match curve [5].

When an identification system operates in verification mode,
we can distinguish two classes: 1) genuine and 2) impostor veri-
fication attempts. The decision to accept is based on comparing
a combined score of a claimed person identity 7, S; to some
threshold 6: S; > 6. The common way to describe the system
performance in such two-class problems is to construct ROC
curves showing the dependencies of errors on threshold 6 (or
DET curve [5]).

If we have a combination algorithm for verification systems,
it can be sequentially applied for all people to operate in the
identification mode [6]. However, this approach does not utilize
dependencies between scores output by a single matcher (i.e.,
the dependencies between the scores along the rows in the score
matrix of Fig. 1). Itis essentially a local method which considers
only a single column of scores as input parameters to combina-
tion functions. Most combination algorithms used in biometric
applications are of this type and are sometimes also user specific
(71, [8].

Here, we present previous approaches which utilize score de-
pendencies in the identification mode.

A. Rank-Based Combinations

T.K. Ho has used classifier combinations on the ranks of the
scores instead of scores themselves by arguing that ranks pro-
vide more reliable information about a class being genuine [9],
[10]. Thus, if the input image has low quality, then the genuine
score as well as the impostor scores will be low. Combining
the low score for genuine class with other scores could confuse
a combination algorithm, but the rank of the genuine class re-
mains as a stable statistic, and combining this rank with other
ranks of the genuine class should result in true classification.
Brunelli and Falavigna [11] considered a hybrid approach where

the traditional combination of matching scores is fused with
the rank information in order to achieve the identification de-
cision. Hong and Jain [12] consider ranks, not for combination,
but for modeling or normalizing the output score of a classifier.
Behavior—knowledge space combination methods [13] are also
based on ranks. Saranli and Demirekler [14] provide additional
references for rank-based combination methods.

The problem with rank-based methods is that the score infor-
mation is lost. Indeed, the best score can be much better than the
second best score, or it could be only slightly better, but score
ranks do not reflect this difference. It would be desirable to have
a combination method which retains the score information as
well as the rank information.

B. Score Normalization Approaches

Usually score normalization [15] refers to a transformation
of scores based on a classifier’s score model learned during
training, and each score is transformed individually using such
a model. Thus, the other scores output by a matcher during the
same identification trial (rows in the score matrix of Fig. 1) are
not taken into consideration. If these normalized scores are later
combined classwise (columnwise), then score dependence is not
accounted for by the combination algorithm.

Some score normalization techniques can use a set of identi-
fication trial scores output by the classifier. For example, Kittler
et al. [16] normalize each score by the sum of all the other scores
before combination. Similar normalization techniques are used
in zero (Z)- and test (T)-normalizations [17], [18]. Z-normal-
ization uses impostor matching scores to produce a class-spe-
cific normalization. Z-normalization does not include the set of
identification trial scores (rows in Fig. 1) and, thus, does not
utilize the score dependency. On the other hand, T-normaliza-
tion uses a set of scores produced during a single identification
trial by utilizing statistics of mean and variance of the identifi-
cation score set. Note that T-normalization is a predetermined
routine without training. Still, using this simple kind of score
modeling turns out to be quite useful; for example, [19] argued
for applying T-normalizations in face verification. There is also
a counterargument [20] that says useful classification informa-
tion gets lost during such normalizations.

Score normalization techniques have been well developed
in the speaker identification literature. The cohort normalizing
method [21], [22] considers a subset of enrolled people close to
the current test person in order to normalize the score for that
person by a log-likelihood ratio of the genuine (current person)
and impostor (cohort) score density models. Auckenthaler et al.
[17] separated cohort normalization methods into cohorts found
during training (constrained) and cohorts dynamically formed
during testing (unconstrained cohorts). Normalization by con-
strained cohorts utilizes only one matching score of each clas-
sifier and, thus, does not consider score dependencies. On the
other hand, normalization by unconstrained cohorts potentially
uses all scores of all classifiers.

III. COMPLEXITY TYPES OF CLASSIFIER COMBINATIONS

This section describes four types of combination methods
and their requirements of training data. Ultimately, the problem
characteristics and the availability of training scores determine
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Fig. 2. Classifier combination takes a set of 57 —score for class 7 by classifier j and produces combination scores .S; for each class i. 7 is the index for the N

classes and 7 is the index for the A classifiers.

the type of combination method which is appropriate for a par-
ticular problem.

Fig. 2 gives a different view of the problem of integrating
scores in identification systems, for the purpose of formally cat-
egorizing the combination methods. The combination functions
of local methods have a reduced parameter set (as connections
in Fig. 2 show), and many well-known combination methods
(e.g., weighted sum of scores) fall into this category. A fully
connected artificial neural network (ANN) accepting M N input
parameters and having N output parameters would present an
example of the most general, class-specific, and global combi-
nation function algorithm [1], [23]. The disadvantage of this
more general approach is that it requires a very large amount
of training data, which might not be always available in identi-
fication systems.

A. Types of Combination Methods

Here, we develop a formal framework for combination
methods further categorizing the local and global combination
functions that are required to be trained. The first two categories
correspond to local and the remaining two correspond to global
methods.

1) Low complexity methods S; = f ({sf} )
j=1,.,M
Methods of this type require that only one combination
function is to be trained, and the combination function
accepts input scores for one particular class as parameters.
It represents class-generic and reduced-parameter set
combination functions.
2) Medium complexity I methods S; = f; ({s{} )
j=1,...,M

Methods of this type have separate score-combining func-

tions for each class and each such function takes, as input
parameters, only the scores related to its class. It repre-
sents class-specific and reduced-parameter set combina-
tion functions.

3) Medium complexity II methods

(G |
'f< %i j=1,...,.M %k G=1,..,M;k=1,... N ki

Methods of this type take as parameters not only the scores
related to the same class, but all output scores of the clas-
sifiers. Combination scores for each class are calculated
by using the same function, but scores for class ¢ are given
a special place in the parameter list. Applying function f
for different classes effectively means permutation of the
function’s parameters. These combination functions are
class generic and use the whole parameter set.
4) High complexity methods

Si =i {SL} )
") j=1,.,M;k=1,...,N
final scores are different for all classes, and they accept

as parameters all of the scores output by the base clas-
sifiers. This represents class-specific and whole param-
eter-set combination functions.

We can illustrate the different combination types using the
matrix score representation (Fig. 1) as well. Each row corre-
sponds to a set of scores output by a particular classifier, and
each column corresponds to scores assigned by classifiers to a
particular class. The illustration of each combination type func-
tions is given in Fig. 3. In order to produce the combined score
S; for class 7, low complexity methods (Fig. 3(a)) and medium I
complexity (Fig. 3(b)) combinations consider only those classi-
fier scores which are assigned to class ¢ (column 7), reflecting the
property of local combination functions. Medium II [Fig. 3(c)]

. Functions calculating
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Fig. 3. Range of scores considered by each combination type and combination
functions.

and high complexity [Fig. 3(d)] methods consider all of the
scores output by classifiers for calculating a combined score
S; for class 4, reflecting the property of global combination
functions.

Low [Fig. 3(a)] and medium II [Fig. 3(c)] complexity
methods have the same class-generic combination functions f
irrespective of the class for which the score is calculated. Note
that medium II complexity-type methods have scores related
to a particular class in special consideration as indicated by
the second ellipse around these scores. We can think of these
combinations as taking two sets of parameters—scores for a
particular class, and all other scores. The important property
in these methods is that the combination function f is the
same for all classes, but the combined scores S; differ since
we effectively permute function inputs for different classes.
Medium I [Fig. 3(b)] and high [Fig. 3(d)] complexity methods
have class-specific combination functions f; trained differently
for different classes.

It is interesting to compare our combinations types with pre-
vious categorization of combination methods by Kuncheva ez al.
[24], who refer to the score matrix as “decision profile”” and “in-
termediate feature space.” Kuncheva’s work also separates com-
binations into a “class-conscious” set which corresponds to the
union of “low” and “medium I’ complexity types, and “class-in-
different” set which corresponds to the union of “medium II”
and “high” complexity types. The continuation of this work [25]
gave an example of the weighted sum rule having three different
numbers of trainable parameters (and accepting different num-
bers of input scores), which correspond to “low,” “medium 1L,”
and “high” complexity types.

In contrast to Kuncheva’s work, our categorization of combi-
nation methods is more general since we are not limiting our-
selves to simple combination rules such as the weighted sum
rule. Further, we consider an additional category of the “medium
II” type. An example of the “medium II”’ combination is the two-
step combination algorithm where in the first step, the scores
produced by a particular classifier are normalized (with possible

Med 1
B M ed I

High

Fig. 4. Relationship diagram of different combination complexity types.

participation of all scores of this classifier), and in the second
step, scores are combined by a function from the “low” com-
plexity type. Thus, scores in each row are combined first, and
then the results are combined columnwise in the second step.

Fig. 4 illustrates the relationships between the types of com-
bination methods. Medium complexity types are subsets of high
complexity type, and the set of low complexity methods is ex-
actly the intersection of sets of medium I and medium II com-
bination methods. In order to avoid a confusion in terminology,
we will henceforth assume that a combination method belongs
to a particular type only if it belongs to this type and does not
belong to the more specific type.

In [26], we provide a description of these complexity types
using the concept of Vapnik—Chervonenkis (VC) dimension
[27]. The ability to use the VC dimension for characterization
of different combination types justifies our usage of the term
“complexity types.”

Higher complexity methods can potentially produce better
classification results since more information is used. However,
the availability of training samples limits the types of possible
combinations to choose from. Thus, the choice of a combination
method in any particular application is a tradeoff between clas-
sifying capabilities of the combination functions and the avail-
ability of sufficient training samples. Different generic classi-
fiers, such as neural networks, decision trees, etc., can be used in
combination within each complexity class. From the perspective
of our framework, the main effort in solving the classifier combi-
nation problem consists of identifying the complexity type and
modifying the generic classifiers (if needed) to compensate for
a mismatched function complexity type for inadequate training
data reasons.

The biometric person authentication systems we experi-
mented with in this research have a high number of enrolled
classes (people) IV and a small number of classifiers (biometric
face and fingerprint matchers) M. Most combinations methods
described in the literature for biometric applications are of low
complexity type. In this paper, we are interested in exploiting
higher complexity combinations. We will derive combinations
rules of the medium II complexity type which are analogous to
the traditional likelihood ratio, neural-network, and weighted
sum combinations of the low complexity type. Our experi-
ments on large biometric score sets confirm that the medium
II complexity combinations have better performance than their
counterparts of low complexity.

Both identification and verification modes of operation can
utilize combinations of all four complexity types. In our ex-
periments, we compare the combination methods of low and
medium II complexity types and report performance for both,
verification and identification, modes of operation.
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IV. DERIVATION OF COMBINATION RULES USING
IDENTIFICATION TRIAL STATISTICS

In this section, we present different combination methods
of the medium II complexity type by utilizing the statistics of
the identification trial score set for normalization purposes. Our
goal is to theoretically derive an optimal combination algorithm
with the assumption that the joint densities of the scores and
score set statistics are known. We will also discuss the applica-
tion of the “background model” (used in speaker identification
[18]) and its relation to our approach.

A. Likelihoods With the Use of Identification Trial Score Set
Statistics

Suppose we combine M independent classifiers, and each
classifier outputs N-dependent scores. The optimal combina-
tion algorithm is the Bayesian classifier which accepts these
N M scores and chooses the class which maximizes the poste-
rior class probability. Thus, the goal of the optimal combination
method is to find

Term C}, refers to the fact that the class k is the genuine class.
By Bayes theorem

i=1,...,N;j=1,...M

P <{8J} . )
1=1,...,N:;j=1,....M

and since the denominator is the same for all classes, our goal
is to find

arg maxp ({sf} |Ck> P(Cr)
k i=1,...,N;j=1,..,.M

or, assuming all classes have the same prior probability

arg max p {ei} |Ck ) -
k i=1,...,Nij=1,..,M

Given the assumption that classifiers are independent, which
means that any subset of scores produced by one classifier is sta-
tistically independent from any other subset of scores produced
by another classifier, our problem is to find

argm?pr ({sg}i_l N |Ck> ) (1
; =

The reliably the
p({ez } R |C’k>, which is a hard task given that
i=1,...,N

goal is to estimate densities

the number N of classes is large and we do not have many
samples of each class for training. Since we do not want
to construct a class-specific combination method, the class
indexes can be permuted. Thus, all of the training samples
pertaining to different genuine classes can be used to train

]

only one density p (3,’f {31 fd

} |Ck) Now sk is
i=1,...,N ik '

723

a score belonging to a genuine match, and all other scores
sie are from impostor matches. In order to keep the

1=

yenes

problem tractable, instead of p <3k7 {sf} |Ck>,
i=1,...,N,i#k

we can consider p (s{j,tﬂ()’k), where 7 is some statistic of

all the other scores besides sfc. The final combination rule for
this method is to find

arg max Hp (s?C ti |Ck> ) 2)
S

As our previous experiments have shown [3], this algorithm
does not perform as well as the traditional likelihood ratio
combination

p (Sﬂck)
L)

One reason for the lower performance could be that the score
set statistics ¢, do not fully reflect the background information

3)

arg max
k

for score sf;, whereas the term p (91 |C’_k) contains such infor-
mation. For example, the genuine matching scores s{c can be
very strong, but located in the region of low probability (both
P (s{f|Ck) and p (si,tﬂCk) are small), whereas p (3%|C_k)
could be even smaller, and the likelihood ratio can still succeed.
In Section IV-B, we will derive a combination rule which com-

bines the use of the score set statistics and background models
[21].

B. Likelihood Ratios With the Use of Identification Trial Score
Set Statistics

We consider the posterior class probability, apply the Bayes
formula as before, but now use the independence of classifiers
to decompose the denominator

P <0k| {s/} >
i=1,..,Nij=1,...M

p <{Sg}izl,...,N;jzl,...,JM |Ck> P(Cy)

The next step is similar to the step in deriving the
algorithm for the background speaker model [18].
We consider the class Cj to mean that some other
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class is genuine, and decompose p({sz } >:
' Ji=1,.,N

rean ({2}, o)er@n (), |

By assuming that N is large and P(Cy) > P(C}), we can
discard the first term and represent 4 as
P(Ck)

p <{3L]}z_1N |Ck>
(e 1:[ P <{3?}i=1,...,zv |C_’“> |

Assuming that all classes have the same probability of occur-
ring (P(Cy) = P(C;) and P(Cy) = P(C;)), we obtain the
following classifier decision:

(L
(I~

In comparison with decision 1 of the previous section, we

p
a a
rgmka
p

have an additional density p ({sj } N |C} ). This density

K2
can be viewed as a background of in{p(;stors or the genuine
class C. As research in the speaker identification suggests [21],
utilizing such a background model is beneficial for system per-
formance.

We estimate the ratios of (5) by additional modeling of

o ({7},

previous section to estimate this density as p (s{67 t{C|C_k) with

|Cy ). We use an approach similar to the
AN

IRERX)

ti as the joint density of impostor scores 57, and corresponding
identification trial statistics ¢;. The final combination rule is
then

P (Si:f'ﬁok)
5 v (sht1Cr)

The use of the identification trial score set statistics considers
D (sfc,tﬂCk) and p (Sivtﬂck) instead of p (sﬂC’k) and

(©)

arg max
k

P (sfC |C’_k), and the background model considers p (s{67 tl |C_k)

orp (91|C_k) in addition to p (si, ti,|C’k) orp (sﬂCk). Thus,
the use of the identification trial score statistics differs from the
background model in being able to account for dependencies
of scores in identification trials by using the statistic ¢;.

Note, that the traditional likelihood ratio ((3)) is the optimal
combination method for low complexity combinations oper-
ating in verification mode (see [28]). Thus, its extension by
(6) should provide a good combination method of medium II
complexity type for verification mode operations.

C. Statistics of Identification Trial Scores

The important question which we have to decide is what par-
ticular identification trial score statistics ti, will be most suitable

to replace the set of scores {sj } g The likelihood

Ji=1,.. Nk
ratio incorporating score statistics ((6)) will be more discrim-
inating than the traditional likelihood ratio (3) if #], provides an

information on whether the score s}, is genuine or impostor. We
use the term "identification model” to denote a particular way
of choosing identification trial score set statistics t7. and using
this statistic together with scores s7..

One of the identification models we previously presented was
the second best score model [29], where statistic #], = shs ("”i;

is calculated as the best score in the set {sf}
i=1

(“second best” after si). We can reason that if the second best
score is big (e.g., bigger than current score si, so sfc is not the
best score), then we have less confidence that sfc is a genuine
score, and more confidence that this is the impostor score.
And if it is small (so si is big relative to all other scores), we
have more confidence that si is genuine. Originally, we used

sbs (sfc) for accepting first-choice decisions in open-set iden-

tification systems [29]. In this case, sbs (sfc) exactly coincides
with second best score of the identification trial score set.

T-normalization can be considered as another identification
model. It is expressed as a transformation of all matching scores
53, by the formula

s,:(l) R Si(l) - 1 (1)
ai(l)

where 17 (1) and o7 (l) are correspondingly the mean and the
standard deviation of the set of scores produced by matcher j
during the identification trial [. In contrast to the second best
score model, T-normalization uses different statistics—,uj and
o7 which are the same for all scores 57, in the current identifica-
tion trial, and it perforrns predetermined transformation using
these statistics.

Clearly, there might be many variations on calculating sta-
tistics #;,—it may or may not be dependent on k, it might in-
clude mean, variance, nth ranked score, or any other statistics
of a score set. It seems that for different applications, the most
useful statistics will be different, and it would be desirable to
have an automatic way of determining useful score statistics. In
our experiments, we limited ourselves to only using second best
score statistics and T-normalization.

One approach to choose a best statistics of identification trial
score sets is to look at the dependence between genuine and
impostor scores. In order to verify the dependence of match
scores, we measured the correlation between the genuine score
and different statistics of the sets of impostor scores. Table I
contains a small part of measured correlations corresponding to
the first;,,—first ranked impostor score, second;y,,—second
ranked impostor score, and mean;,,—the mean of impostor
scores. As the results of Table I show, the scores produced by
real-life classifiers are indeed dependent.

The correlations between genuine and impostor set statistics
indicate the usefulness of a given statistics—bigger correlation
means that this statistic is better able to predict whether the score
is genuine or not. So we might want to calculate such corre-
lations for many different statistics and choose statistics with
bigger correlations. Second best score statistics seems to pro-
vide a good prediction on the strength of genuine score, and this
is the additional reason why we used it in our experiments. Note
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TABLE I
CORRELATIONS BETWEEN S,.,, AND DIFFERENT STATISTICS OF
THE IMPOSTOR SCORE SETS PRODUCED DURING IDENTIFICATION
TRIALS IN NIST BSSR1 DATA

Matchers || firstimp | secondimp | Mmeanimp
li 0.3164 0.3400 0.2961
ri 0.3536 0.3714 0.3626
C 0.1419 0.1513 0.1440
G 0.1339 0.1800 0.1593

that sbs (si) used in our experiments is calculated with respect

to s and if s}, is an impostor score, it might not be first;m,, or
second;my. During testing, we do not know what the exact set
of impostors is, so instead of first;m,, or second;,,,, we are

forced to use sbs (si)

D. Combinations of Dependent Classifiers

The combination algorithms presented in the previous two
sections deal with independent classifiers. How should we ad-
dress dependent classifiers?

By looking at the combination (1) and (6), we can see that

each classifier contributes terms p {sj} |Ck | and
i=1

%

o({2), e ({), @)

yeeny yeney

ingly to the combination algorithm. Thus, one can conclude that
it is possible to model the same terms for each classifier with

the help of identification trial score statistics p (sfC ti |Ck) and

correspond-

P (si,, t |Ck) /p (S)Jw t |C_k), and then combine them by some
other trainable function. ' 4

Note that any relationships between scores s;' and s;> where
i1 # i and j; # jo will be essentially discarded. This seems
to be inevitable for the current complexity type of combina-
tions—medium II. If we wanted to account for such relation-
ships, we would need class-specific combination functions and,
thus, higher complexity combination methods.

Another way to construct the combinations of medium II
complexity type for dependent classifiers is presented in Sec-
tion IV-E.

E. Normalizations Followed by Combinations and Single-Step
Combinations

Fig. 5 represents, in graphical form, the type of combinations
we have presented thus far. All of these combinations consist of
two steps. In the first step, each score is normalized by using the
other scores’ output by the same matcher. In the second step,
normalized scores are combined by using a predetermined or
trained combination function.

Score normalization based on modeling the joint

densities of scores and statistics, p (si,tﬂCk and

p(si,tﬂCk) /p (sitﬂ(]_k) might not correctly represent

the original terms of (1) and (5), p({s{} N |C'k) and
i=1
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Class i Class i
1 1 1 1 1
5y 8; SN Statistiesof Si | 1
2 I identification
e ; " models .
Classifierj (g7 s s s’ ¥
1 f N ey S
. =1 (s sy
M M M M
tH s Sy s M
S;

Fig. 6. One-step combination method utilizing the identification model.
J
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densities might also be unreliable if few statistics are used.

However, it is not necessary to have the two steps for com-
binations. The contribution of the particular classifier j to the
whole combination algorithm’s output for class ¢ is calculated
only from score s] and statistic ¢ . Fig. 6 illustrates how scores
and statistics from all of the participating classifiers could be
combined in a single combination step.

In the algorithm described by Fig. 6, the statistics ¢/ are ex-
tracted for each classifier j using its output scores by a predeter-
mined and nontrainable algorithm. The scores related to a par-
ticular class and statistics are combined together by a trainable
function. This combination function is not class specific and is
easily trainable. This type of combination is of medium II com-
plexity type. In comparison, for the low complexity-type com-
binations, only the scores for a particular class are combined,
and statistics from other classes are not considered.

N |C’_k> ). Approximating

F. Neural Network and Weighted Sum Combinations Using
Second-Best Score

As an example of single-step combinations, we consider two
combination methods incorporating the second best score sta-
tistics: the neural network and the weighted sum rule.

The traditional neural network corresponding to the low com-
plexity combination type can be represented as a function S; =
f(st,...,sM). Following the diagram of Fig. 6, the neural-
network combination of medium II complexity type will have
the form S; = f (s}, sbs (s}),...,sM, sbs (sM)). We used
multilayer perceptron trained by a traditional backpropagation
method and optimizing MSE.
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The traditional weighted sum combination without the use of
second-best score ("weighted sum local’) is a low complexity
combination which combines M scores from M biometric
matchers assigned to a particular class ¢

S; :w1511 +---+stZM. @)
The weighted sum rule with the sbs model ("weighted sum
global’) combines scores as well as statistics of score sets

S; = wls,L1 + wosbs (sLl) +.- 4 sz_lsf” + wopssbs (sf\[) .

®)
The weighted sum rule can be specifically trained to maximize
the correct identification rate in the identification mode of oper-
ation [28]. However, it is not optimal for the verification mode.
Thus, we will test the performance of the weighted sum rule with
and without the second-best score model modification for the
identification-mode operation only. The neural network, on the
other hand, might not be optimal for the identification mode due
to MSE minimization criteria, but gives an output approximating
likelihood ratio. We give the performance of the neural network
method for identification and verification modes.

V. EXPERIMENTS

We have used the biometric matching score set BSSR1 dis-
tributed by NIST [30]. This set contains matching scores for a
fingerprint matcher and two face matchers “C” and “G.” Fin-
gerprint matching scores are given for the left index “li” finger
matches and right index “ri” finger matches. For each combi-
nation method we performed, six sets of experiments on com-
bining any two pairs of scores : “C” & “G”, “li” & “1i”, “li” &
“C”, “li” & “G”, “ri” & “C”, and “1i” & “G”.

Although the BSSR1 score set has a subset of scores ob-
tained from the same physical individuals, this subset is rather
small—517 identification trials with 517 enrolled people. We
use bigger subsets of fingerprint and face matching scores of
BSSR1 by creating virtual persons; the fingerprint scores of
a virtual person come from one physical person and the face
scores come from a different physical person. Note that for pairs
of face scores and for pairs of fingerprint scores, we retain the
correspondence of scores to real people as specified in the data-
base. The scores are not reused and, thus, we are limited to the
maximum number of identification trials—6000 and the max-
imum number of classes, or enrolled people—3000. Some en-
rollees and some identification trials had to be discarded due to
enrollment errors. We use a bootstrap testing procedure: for 100
iterations, we randomly split the data in two parts—2991 identi-
fication trials with 2991 enrolled people in each part used as sep-
arate training and testing sets. The results of 100 training/testing
iterations are averaged at the end.

In order to achieve good performance of training algorithms,
all of the scores were normalized using a simple min-max algo-
rithm to interval [1]. When we used T-normalization, additional
min-max normalization was performed after it.

A. Description of Used Algorithms

The goal of our experiments is to compare three general
architectures for classifier combination—traditional low com-
plexity combinations which do not use any identification model,

TABLE II
CORRECT IDENTIFICATION RATES OF COMBINATIONS IN IDENTIFICATION
SYSTEMS. THE STANDARD DEVIATIONS OF THESE RATES ESTIMATED
FROM BOOTSTRAP SAMPLES ARE GIVEN IN PARENTHESES

Matchers NN | NN+T | NN+sbs WS | WS+T | WS+sbs
C&G 83.49 | 83.59 83.86 84.51 | 84.53 84.85
(o) (0.65) | (0.84) | (0.62) (0.50) | (0.50) | (0.50)
li &ri 95.12 | 95.11 95.17 95.11 | 95.13 95.02
(o) (0.30) | (0.30) | (0.29) (0.29) | (0.32) | (0.32)
li&C 96.44 | 97.13 96.21 97.15 | 97.17 97.19
(o) (0.93) | (0.24) | (0.78) (0.23) | (0.23) | (0.25)
li& G 95.38 | 94.65 95.73 95.38 | 9528 96.12
(o) (0.35) | (0.80) | (0.43) (0.30) | (0.26) | (0.29)
n&cC 97.51 | 98.10 97.39 98.11 | 98.10 98.16
(o) (0.63) | (0.17) | (0.41) (0.16) | (0.17) | (0.22)
i& G 96.69 | 96.09 97.03 96.85 | 96.76 97.29
(o) (0.29) | (0.54) | (0.26) (0.23) | (0.21) | (0.25)

medium II complexity combinations based on T-normalized
scores, and medium II complexity combinations using the
second best score model. Three types of learning algorithms
are used in the experiments: 1) likelihood ratio; 2) neural net-
work; and 3) weighted sum. In order to make the comparison
objective, we utilize each learning algorithm in each of three
architectures. Each classifier in traditional and T-normalization
methods supplies only a single score and the learning function
depends on two input parameters f(s!, s2). On the other hand,
the second best score model has additional score statistics
sbs(s') and sbs(s?), and the learning function depends on four
input parameters f(s!, sbs(st), s2, sbs(s?)).

For likelihood-ratio combinations, we estimate score densi-
ties using the Parzen window method with Gaussian kernels.
The kernel width is determined by the maximum-likelihood
method. We use only 1000 identification trial scores for re-
constructing densities, and the remainder of the training set
(2991-1000 trials) is used for validating kernel widths. Note
that for each identification trial, there is one genuine score and
2990 impostor scores. In order to make our implementation
faster, we only used a single random impostor score from a
trial for training. We did not utilize the statistical independence
of data when combining matchers of different modalities, and
in all experiments, we approximated either 2-D densities of
genuine and impostor scores—pgen(st, s%) and pimp(st, s?),
or four dimensional densities—pgen (s, sbs(st), s%, sbs(s?))
and pimp(s', sbs(s'), 52, sbs(s?)).

The neural network is multilayer perceptron trained by the
backpropagation algorithm. The neural network has two hidden
layers with eight and nine nodes and an output layer with one
node in all cases. The input layer has two nodes for traditional
training (no identification model) and T-normalized training,
and four nodes for training with the second best score model. As
for the likelihood-ratio method, we used 1000 training samples
(one genuine and one random impostor score from the identifi-
cation trial) for backpropagation training and remaining 2991-
1000 training samples for validation. The training was stopped
when the MSE on the validation set achieved minimum.

For the weighted sum methods, we need to find the optimal
weights maximizing the number of correct identification trials
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Fig. 7. CMC curves for weighted sum combinations utilizing and not utilizing identification models in the identification mode.

on the training sets. Though previous research proposing solu-
tions for this problem exists (e.g., [31], [32]), it deals with the
case of small number of classes and is not directly applicable to
our case. The key idea of learning algorithms minimizing clas-
sification error is to replace the discrete misclassification cost
function with some smooth approximation in order to be able to
take a derivative of the cost function and perform gradient de-
scent optimization. For our experiments, we implemented a sim-
pler approach of random modification of weights and accepting
new weights if classification performance improves. Though
our approach takes more training time than the gradient descent

method would have taken, it does not depend on the smoothing
parameters and it is sufficiently fast.

B. Performance in Identification Operating Mode

Table I shows the obtained correct identification rate for ex-
periments with the neural network and weighted sum combi-
nation methods. The correct identification means that the gen-
uine combined score was better than 2990 impostor-combined
scores (there is a total of 2991 enrollees). In this table, “NN”
is the traditional neural-network combination method of low
complexity type, “NN + T” is the neural network operating
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Fig. 8. ROC curves for likelihood-ratio combinations utilizing and not utilizing identification models in verification mode.

on T-normalized scores and “NN + sbs” is the neural network
augmented with the second-best score model. Similarly,”WS”
is the traditional weighted sum combination of (7), “WS +
T” is the weighted sum operating on T-normalized scores and
“WS + sbs” is the weighted sum combination augmented with
the second-best score model of (8).

We also provided the CMC graphs showing the performance
of “WS,” “WS + T,” and “WS + sbs” methods in Fig. 7. As
we discussed in Section IV-F, neural-network training is not
optimized for best rank performance and we chose to not include
similar CMC graphs for it.

We can see that in all cases, the addition of either the
T-normalization or the second-best score statistic into the cor-
responding low complexity algorithm results in performance
improvement. The weighted sum has generally better perfor-
mance than the neural-network combination method, and the
second best score statistics mostly outperform T-normalization.

C. Performance in Verification Operating Mode

Although there are examples where score normalization tech-
niques with background models have been used for identifica-
tion tasks [11], even more applications use such techniques for
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Fig. 9. ROC curves for neural-network combinations utilizing and not utilizing identification models in verification mode.

identification systems operating in verification mode [21], [18],
[33]. We also applied the combinations utilizing identification
models for biometric person verification tasks. The drawback
of using either the background models or the second-best score
statistic in verification tasks is that we have to produce not only
one match per person and per matcher, but also some set of
matching scores for other people enrolled in the system (or some
artificially modeled people).

Figs. 8 and 9 contain the results of experiments when oper-
ating in the verification mode for the likelihood-ratio and neural-
network combination methods. The ROC performance curves
were constructed using combinations of 2991 x 100 (test trials

FAR
®ri&G

X iterations) genuine and impostor score sets. Note that only a
single random impostor was used from each test identification
trial.

We were able to achieve significant improvement in the ver-
ification task performance as well by utilizing the second-best
score statistic. The T-normalization is also beneficial, but to a
smaller extent in these experiments.

D. Dependence of the Performance on the Number of Training
Samples

Since the use of the second best score model requires learning
combination functions with a bigger number of parameters, the
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Fig. 10. Correct identification rates together with 90% bootstrap confidence estimates for different numbers of training and validation samples in

neural-network combination methods.

errors associated with the learning algorithm might increase
and negate the benefits of additional model information. In
order to clarify the impact of additional training demand
on the proposed methods, we conducted experiments with
different numbers of training samples supplied to the learning
algorithm. Figs. 10 and 11 present results of these experiments
for neural-network and likelihood-ratio combination methods.
Same numbers of training and validation samples are chosen
here: 8,16,...,512.

Fig. 10 presents the correct identification rate together with
90% confidence intervals estimated from bootstrap samples

(extreme 5% of bootstrap samples were discarded from each
end) for neural-network combinations. The performance results
agree with the results presented in Table II—combinations
involving “C” are well handled by the T-normalization method,
and combinations involving “G” have better performance
when using the second best score model. The size of training
and validation sets have little impact on the average correct
identification rate, though it tends to slightly increase with
the increasing size of these sets. The impact on the spread of
rate measurements is more significant. If we want to avoid the
accidental bad performance of a particular learned algorithm,
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Fig. 11. Equal error rates (EERs) together with 90% bootstrap
likelihood-ratio combination methods.

we need to ensure that a sufficient number of training samples
are used.

Fig. 11 presents the EERs together with 90% confidence in-
tervals for likelihood-ratio combination methods. The increase
of the training sample size has big impact on the spread of error
rates, and a lesser impact on the average error rate. In some
cases, the second best score model has worse performance than
the T-normalization method when the number of training sam-
ples is small. For a larger number of training samples, the second
best score model overtakes T-normalization. This observation
confirms that learning the 4-D score densities for the second

confidence estimates for different numbers of training and validation samples in

best score model can result in a worse performance than the ap-
proaches requiring learning 2-D densities, such as T-normaliza-
tion. When the number of training samples is sufficiently large
(more than 100 in this case), the density approximations for the
second best score method are good enough to outperform T-nor-
malization.

VI. CONCLUSION

We have presented four complexity combination types that
originate naturally from the structure of the constructed com-
bination method. We showed the usefulness of differentiating
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these four combination types to better understand the problem
of classifier combination and for constructing well-performing
combination algorithms. We observe that often the algorithms
used for combining matchers in biometric identification sys-
tems only utilize the scores related to one class to produce the
final combination score. Combination algorithms of low com-
plexity type discard the dependency information between scores
assigned to all classes by any single classifier. Instead of using
low complexity combination algorithms in identification sys-
tems, we describe the use of medium II complexity-type combi-
nations, which utilize all of the available scores and require the
training of only a single combination function.

In order to use the relationships between scores assigned by
one classifier to different classes, we have introduced the con-
cept of the second-best score statistic. It is a way of score nor-
malization where the normalization depends on all of the scores
output by a classifier in any one identification trial, and the
method is the same for all classes. This approach has less com-
plexity than previous attempts of normalization [34], [35]. In
these previous attempts, normalizations were class specific and
required a huge amount of training data. The combinations uti-
lizing such normalizations are similar to the behavior knowl-
edge space combination [36], and belong to the high complexity
combination type. Biometric identification problems can have a
large number of enrolled people, and such combinations are not
feasible due to the lack of training data. By restricting ourselves
to nonclass-specific normalizations, we are able to concentrate
on combinations of the medium II complexity type. Such com-
binations have significantly lower complexit and result in effi-
cient algorithms for identification systems.
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