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Abstract— We present an end-to-end framework for outdoor
scene region decomposition, learned on a small set of ran-
domly selected images that generalizes well to multiple data
sets containing images from around the world. We discuss
the different aspects of the framework especially a generalized
variational inference method with better approximations to the
true marginals of a graphical model. Experimentally, we explain
why the framework is robust and performs competitively on
many diverse scene data sets, including several unseen scene
types. We have obtained high pixel-level accuracies (≈80%) in
three of the four data sets, which include a benchmark data set
known as the Stanford background data set. Our model obtained
over 70% accuracy on the fourth data set, which contained
a number of indoor and close-up images that are significantly
different from our training examples.

Index Terms— Scene understanding, semantic labeling, gener-
alized mean field, generalization, low- and mid-level image cues.

I. INTRODUCTION

MUCH of computer vision involves recognizing patterns
in images and videos, one of the main challenges of

pattern recognition algorithms is their ability to perform well
when presented with new, not-previously-seen data. Perfor-
mance results for different computer vision tasks such as
event detection, scene recognition, object detection (with the
exception of face detection) are typically presented in the
context of a single dataset, and it is not always clear how such
systems (both the algorithm and the model generated) will
perform in new environments on the same problem. Hence, a
central concept in both machine learning and computer vision
is generalization: how to generalize beyond the examples
provided during training to new examples presented during
testing?

In this paper we approach the concept of generalization in
the context of scene parsing (segmentation and annotation). We
develop a stable and robust scene parsing algorithm trained on
only 572 images and extend the learned model to test several
significantly larger datasets including the Spain dataset.1 The
level of accuracy we have obtained in parsing the novel scenes
indicates a robust generalization of our algorithm and suitable
for modeling new environments.

The main contributions of this work are as follows: (i) we
demonstrated the use of a cluster-based inference algorithm for
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Fig. 1. Results of testing the scene decomposition task on different datasets
with a model learned on 572 randomly selected images from Stanford BG
dataset. Top: shadowed image from the Spain dataset; bottom: complex scene
from the rest of the world dataset; Details of these and other datasets are
given in Section IV. (images best viewed in color).

scene parsing tasks in computer vision. The algorithm based
on mean-field approximation is extended in a manner analo-
gous to how belief propagation (BP) extends to generalized
BP (GBP). We apply this inference method to image labeling
and show experimentally how it improves our final results;
(ii) we presented an end-to-end framework involving mid-level
features, classifier and the usage of a region-optimal inference
method, which allows us to generalize well across datasets;
(iii) we introduced generalization benchmark results on three
public datasets that can serve as a new measure of the general-
izability of scene parsing methods. It is important to note that
we are not stating that other methods do not generalize well,
instead, going forward we encourage researchers in this area
to perform similar benchmark tests on these diverse datasets
for evaluating their generalization performance.

A. Related Work

In many high-level scene understanding tasks, it is important
to specifically extract the regions present in a scene, in order
to reason more accurately about the high-level concepts that
exist in that scene. Hence, having a readily generalizable
method of reasoning about scene regions and geometries,
largely independent of training data, is an advancement in
scene understanding. It is important to note that we dis-
tinguish between object recognition/categorization and scene
decomposition problems. In object categorization, the scenes
of interest are typically object-focused as observed from the
benchmark object categorization datasets such as Pascal-VOC-
2010 [1] and MSRC version 2 [2]. The goal here is to detect
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Fig. 2. Examples highlighting challenges faced in scene region decomposi-
tion (best viewed in color).

specific foreground classes, under the assumption of a generic
background class whereas scene decomposition is the inverted
problem where the goal is to detect specific background
classes, under the assumption of a single generic foreground
class. Although it seems to believe that scene decomposition
is a trivial problem when compared to object categorization
(given that the relative smaller number of categories), there
are challenges in accurate scene decomposition that include
(i) the presence of one generic foreground class whose mem-
bers tend to overlap significantly with other classes (for
example, in Figure 2 the man’s shirt shares similar cues as
the background foliage). If this was a face or person detection
problem, the existence of strong shape specific cues and
priors would alleviate the task. However, this is a common
problem in scene decomposition; (ii) also, unlike the typical
object categorization problem, in scene region decomposition,
different regions can share similar material and geometry cues
and can tend to merge into each other (see Figure 2) make the
region delineation challenging. We therefore limit our scope
of comparisons to other works specifically in scene region
decomposition.

One of the earlier works in scene region decomposition by
Konishi and Yuille [3] used color and local texture filters to
extract features from image pixels and classify them into one
of six classes (edge, vegetation, air, road, building, and other).
They constructed a probabilistic model using the empirical
joint probability distributions of texture filter responses at
multiple scales as well as prior knowledge about the typical
number of each class per image. Finally, they applied Bayesian
classification to assign a label to each pixel. The algorithm
scored >90% for three of the six classes in their two datasets.
The number of training and testing images from each of the
two datasets was 50. We present a generalizable framework
which is trained on 572 images but generalizing to over 3,000
images from multiple sources.

More recently, Gould et al. [4] presented a scene decom-
position framework where they first partitioned their training
images into multiple segmentations and the pre-computed
segmentations were used to make a dictionary � of proposal
moves for optimizing an energy function. Their energy mini-
mization approach was defined in terms of multiple potentials:
(i) the pixel-to-region association; (ii) the region semantic
class; (iii) the region geometry; (iv) the region appearance;
and (v) the location of the horizon. A two-stage variation
of the iterated conditional modes (ICM) inference method
was used to optimize the pixel-to-region assignment using

dictionary �. This method could be somewhat viewed as a
dynamically shifting conditional random field (CRF) where the
the graphical model constantly changes its internal structure
based on some external global energy criteria. Like the stan-
dard CRF, there are no explicit latent variables being estimated
and the energy minimization considers both individual and
pairwise potentials for inference. Along similar lines, Kumar
and Koller [5] use the model of Gould et al. to compute unary
and binary potentials. Unlike the previous method, a current
iteration of the problem would merge and intersect with seg-
ments from the dictionary of regions to form putative regions.
A tight linear program relaxation of an integer program was
used to solve the energy minimization problem for this region-
based model.

Lately, Socher et al. [6] have used a recursive neural
network (RNN) with max-margin structure prediction to recur-
sively identify the units of an image. They learned a pairwise
score between adjacent segments and segments where the
highest affinity scores were merged so that the underlying
graphical structure was reconfigured to reflect the new “super-
segment.” By recursively pairing segments, a tree structure
is implicitly defined over an image, where the root of the
tree is the entire image. Each node in the tree has a feature
representation associated with it. The class labels of the tree
nodes are estimated by first defining a softmax class prediction
for the nodes and then optimizing an error function across the
entire neural network. Unlike the previous techniques, in our
framework the underlying graphical structure does not change
dynamically during inference, rather each node changes its
label value during inference. Other interesting approaches
preforming scene decomposition are described in [7]–[9].

II. OUR PROPOSED FRAMEWORK

Although there have been a few approaches to the scene
region decomposition problem, a framework common to the
more recent approaches includes (i) a segment (or super-
pixel) level image representation and the extraction of low-
level cues especially color and texture from such segments;
(ii) an underlying graphical structure over which class-specific
probabilistic and/or energy models are learned; and (iii) a
technique for assigning the learned class labels to every node
in the graph which is then inherited by every pixel in the scene
image. We therefore present our approach in the context of the
common framework.

A. Image Representation and Low-Level Cues

Superpixels have become the representation-of-choice in
many computer vision algorithms, especially for image label-
ing tasks [12]. The more recent scene decomposition methods
described in Section I-A use superpixels either to generate the
dictionary of proposal moves or as inputs to the training model.
Since many superpixel generation algorithms were originally
designed as full image segmentation algorithms, in complex
scenes, they tend to yield superpixels which are highly irreg-
ular in shape and size. These then require heuristic-driven
normalizations during processing. The Turbopixels algorithm
[10] creates highly regular in shape and similarly sized regions.
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Fig. 3. Left: superpixels generated by Turbopixel [10]; right: segments
generated by the local variation algorithm [11].

They are fast to compute and strongly respect local image
boundaries - fulfilling much of our superpixel requirements.2

Because a large part of our focus in our framework is on
the underlying graphical structure, where the uniformity and
regularity of the nodes is important, we opted to use the Tur-
bopixels algorithm. Figure 3 shows a qualitative comparison
of the algorithm with another widely used method [11] on a
textured image.

We computed a 68-dimensional feature vector for each
superpixel, consisting of color, texture, location and shape
cues, which are a subset of the surface cues presented by
Hoiem et al. in [12]. The color features are mean values from
RGB, HSV, YCbCr and L*a*b* channels (12 dimensions);
normalized histogram from hue (5 dimensions), saturation
(3 dimensions), Cb (5 dimensions) and Cr (5 dimensions). The
texture features are obtained from the mean absolute responses
and histogram of maximum responses from 15 Leung-Malik
filters [13] (i.e. total 30 dimensions). Location features are the
mean horizontal and veritical locations, 10% and 90% x , y
locations (6 dimensions). The shape features are ratios between
the 10% and 90% x and y locations, along with the normalized
area of the superpixel (2 dimensions).

We also computed a 37-dimensional pairwise feature for
each pair of adjacent superpixels, consisting of the difference
of the features of the two adjacent superpixels. All the dif-
ferences were measured in terms of absolute values unless
otherwise mentioned. Specifically, the features composed of
the differences of the mean color values (12 dimensions);
the Jenson-Shannon divergence between the normalized his-
tograms (5 dimensions3;) the difference between the mean
texture responses (15 dimension); the difference between mean
x , y locations (2 dimensions); the normalized area ratio
between two superpixels (1 dimension); the ratio between the
boundary length and the perimeter of the smaller superpixel
(1 dimension); and the ratio between boundary length and
endpoint distance (1 dimension).

B. Classifier and Mid-Level Cues

In addition to the low-level cues, empirically, we observed
that although the horizon line was a very strong cue for
labeling, it was also very unstable; i.e. when the horizon value
shifted by a few pixels from the true value, it had a large
negative impact on the resulting class labels. We therefore
developed a geometry-based mid-level cue which we refer

2Turbopixel implementation can be found at http://www.cs.toronto.edu/
∼babalex/turbopixels_supplementary.tar.gz

3Corresponds to hue, saturation, Cb, Cr and texture histograms respectively

Fig. 4. The two red lines in the image define the range-of-the-horizon cue.

to as the range-of-the-horizon (as illustrated in Fig. 4). The
range-of-the-horizon cue consists of the relative location of
each superpixel to the two horizontal lines, one going through
the lowest 10% superpixel in the sky plane, and the other going
through the highest 10% superpixel in the support plane. So
to obtain the range-of-the-horizon, we initially use the same
end-to-end framework to parse an image into the geometry
classes - sky, vertical, support (corresponding to the 3 main
classes defined by Hoiem et al. [12]) and then compute the
range lines.

We now combine this mid-level cue with the low-level
cues from Section II-A so that the combined cues result in a
70-dimensional feature vector which are trained using boosted
decision trees. To train the 8 semantic region labels, we trained
8 sets of boosted decision trees, in a one-versus-all fashion.

The pairwise classifier estimates the likelihood that two
superpixels have the same label. This is a two-class problem
where adjacent superpixels either have the same label or
not. We obtain the training label from groundtruth and use
the difference-based, pairwise feature that we computed in
section II-A. Boosted decision trees are also used for clas-
sification here. The prediction from this pairwise classifier is
used to generate the affinity matrix A.

The superpixels define an underlying undirected graph
G(V , E) whose edges are formed by the adjacency structure at
each node vi ∈ V : {i = 1, · · · n}; n is the number of nodes in
the graph. By imposing an exponential family distribution, we
can apply an approximate mean-field-based inference which
has been proven to converge to a globally consistent set of
marginals and yields a lower bound on the likelihood [14].
Details of the inference algorithm are provided in Section III.

III. REGIONAL-OPTIMAL GRAPH INFERENCE

A. Overview of Mean Field (MF) Approximation

Although the inference problem is tractable for graphical
models with small treewidths, the general inference problem
on graphs is NP-hard. For many graphical models of interest,
especially in computer vision, the treewidth is too large to
allow efficient exact inference, thus resulting in less accurate
approximation methods. In this work, we use the variational
approach to probabilistic inference. Because exact inference is
infeasible in a problem such as this, we can convert our infer-
ence problem to an optimization problem by approximating the
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function to be optimized, and then solving the relaxed opti-
mization problem. If p(x|π) is a probability distribution that
factors according to a graph G, we can define an optimization
problem that exploits the structure of G, so that the solution
to the optimization problem results in approximations to the
marginal probabilities. Such variational inference methods
approximate p(x|π) with tractable distributions q(x|α), where
α are the set of free parameters. When q(x|α) is a completely
factorizable or tractable distribution, the class of methods is
referred to as “mean field methods”. A tractable family will
correspond to a subgraph H of G.

When the subgraph has no edges, the approximating poste-
rior distribution q can be completely factorized as:

q(X) =
∏

i

qi (xi ). (1)

B. Generalized Mean Field (GMF)

The relationship between generalized mean field (GMF) and
the naive mean-field method can be viewed as being analogous
to the relationship between generalized belief propagation
(GBP) and ordinary belief propagation (BP).

GBP approximations [15] are performed on hypergraphs,
defined over regular graphs via overlapping clusters of vari-
ables. The choice of clusters are often determined by the
clique structure of the underlying graph, and go a long way in
determining the performance of the GBP algorithm. Typically
GBP algorithms require cluster-factorizability which is not
always satisfiable for general distributions.

In a similar fashion, Xing et al. [14] introduced the class
of GMF algorithms using non-overlapping clusters of cliques.
Given a disjoint clustering of variables, C = {C1, C2 . . . CI },
where Ci is the set of nodes in the i th cluster, and Ci need not
form a clique; GMF defines a subgraph consisting of tractable
connected components of clusters of nodes. Similar to the
naive MF, the GMF approximation to the joint posterior can
be expressed in as a product of tractable cluster marginals:

q(X) =
∏

qi (XCi ) (2)

By imposing an exponential distribution on the original graph:

p(X|θ) = 1

Z
exp{

∑

α∈A
θαφα(XDα )} (3)

D = {Dα|α ∈ A} is the set of cliques of G indexed by
the set A; φ = {φα|α ∈ A} is the set of clique potentials;
θ = {θα|α ∈ A} is the set of parameters associated with
the node potential functions φ; and Z is the normalization
constant.

Hence, for a disjoint clustering of variables, C, the true
cluster conditional for a cluster Ci ∈ C can be written as:

p(XCi |XM Bi = xM Bi ) ∝ exp{
∑

Dα⊆Ci

θαφα(XDα )

+
∑

Dβ⊆Bi

θβφβ(XDβ∩Ci , xDβ∩M Bi )} (4)

M Bi is the Markov blanket of Ci ; Bi is the set of cliques
intersecting with Ci but not contained in Ci (see Figure 5);

Fig. 5. The Markov blanket M B1 of cluster C1 are the blue shaded nodes
while the gray blobs are cliques intersecting with Ci but not contained in it.

and lowercase x is a specific assignment to X.
For a given clique Dβ , let Iβ be the indices of clusters

intersecting with the clique Dβ so that Iβi = Iβ \i . By defining
a term referred to as the peripheral marginal potential of
cluster Ci given by φ′β(XDβ∩Ci

, qIβi
), the GMF approximation

of the cluster marginal qi (XCi ) is isomorphic to the true cluster
conditional of Equation 3 [16].

This isomorphism allows for an asynchronous iteration
procedure looping over each cluster, calculating its peripheral
marginal potentials using the current cluster marginals of its
own Markov blanket clusters, and then updating its own cluster
marginal. The advantage of such a technique is that more
efficient inference (even exact inference) can be done inside
each cluster (region), so that the final approximation would be
more accurate.

C. Using Graph Partitioning for Variable Clustering

Similar to generalized belief propagation, the quality of the
generalized mean field approximation depends critically on the
choice of variable clustering of the underlying graph G. Unlike
generalized belief propagation which involves the generation
of hypergraphs of overlapping clusters from G, GMF involves
non-overlapping clusters, thus making the application of graph
partitioning methods very attractive. For clustering variables it
will be desirable to break up cliques with small weights, hence
we consider graph partitioning based on minimum costs.

If we now consider the graph generated by our superpixel
organization, G = (V , E) with a nonnegative edge func-
tion a : E ← [0, inf), a k-partition of V is a collection
P = {V1, V2, . . . Vk} of k disjoint subsets of V , whose union
equals to V . The symmetric matrix A = {ai j } is the affinity
matrix where ai j = 0 when there is no edge, and aii = 0,∀i .

If we define an n × k matrix � = πv j as the k-partition
matrix where πv j ∈ {0, 1},∀v, j , then � is an orthogonal
matrix and ‖�‖F = √n. The notation ‖ · ‖F is the Frobenius
norm, i.e. ‖�‖F =

√
trace�T �.

Hespanha [17] showed that an n×k matrix � is a k-partition
matrix if and only if each row of � is a vector of the
canonical basis of R

k . Hence a k-partition matrix � is com-
pletely specified by an n-vector whose vth entry contains the
index within the vth row of � of the entry equal to one.
This vector is called the partition vector associated with �.
There is a one-to-one correspondence between the set of
k-partitions of V := 1, 2, . . . , n and the set of k-partition
matrices �, so that the graph partitioning problem of finding a
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minimum cost k-partition of G (no partition should have more
than l nodes and l = �n/k for perfect balance, although in
practice a small error of imbalance ε is tolerated) is cast as.

maximize trace(�T A�) (5)

subject to πv j ∈ 0, 1,∀v, j

� orthogonal, 1n�1k = n, 1n�ei < l,

where 1n is an n-vector with all entries equal to one and
ei is the canonical basis of R

k . The above maximization
problem can be very efficiently solved using spectral clustering
methods, details of which are provided in [17].

D. Our Implementation of GMF and Spectral Graph
Partitioning

In order to implement generalized mean field (GMF) infer-
ence, we first generate an undirected graph from the superpix-
els (by using the Turbopixel algorithm [10]). The selection of l
in equation 5 is critical for the success of the GMF inference.
Too large (or small) values of l decreases the efficiency of
the algorithm since it reduces the GMF back to naive MF.
We select parameter l using a heuristic so that the resulting
combined nodes (superpixels) can cover a small region that
represent one class in the image. For example, let s be the
size of the superpixel and α be the number of pixels that can
roughly cover an area of the same label, then we set l ≤ α/s.
In practice, the selection of l is not very sensitive, we found
similar performance of different choices of l provided that the
previous condition is met. For the nodes v ∈ V , the output of
the boosted decision tree classifier was selected as the single
node potential θi . The pairwise potentials were recorded in
the affinity matrix A (see section II-B). The inputs to the
GMF are therefore (i) the learned classification model p(X, Y)
where X are single node potentials and Y are the class labels,
(ii) the node pairwise relationships in the form of the affinity
matrix A; and (iii) the set of l-bound partitions (or clusters)
C obtained from the spectral graph partitioning method. The
resulting output is the approximation q(Y).

In the next section, we present the results we obtained using
this improved inference approximation, on several diverse
benchmark datasets obtained from different parts of the world.

IV. EXPERIMENTS AND RESULTS

To show the extent to which our proposed framework
generalizes, we perform the scene decomposition task on
several datasets including the Stanford BG dataset [4] which
has been tested extensively using various methods. We ran
the scene parsing tests on all the other datasets using only
the model learned from the single best performing fold
(572 training images) of the Stanford BG test. Hence,
we used the model learned from 572 training images to suc-
cessfully label over 3,000 other diverse scenes from different
parts of the world across. To illustrate the effectiveness of the
GMF method, we comparatively tested it against both its naive
counterpart, the single node potential baseline and the region-
based energy method [4]. In the single node potential case,
no pairwise information is used in the inference. A summary

TABLE I

RESULTS (BEST-FOLD) COMPARING GENERALIZED MEAN FIELD (GMF)

WITH OTHER INFERENCE METHODS, WHERE THE TRAINING DATA IS

FROM STANFORD BG AND TEST DATA IS FROM THE

DATASETS IN THE LEFTMOST COLUMN

TABLE II

CONFUSION MATRIX FROM 5-FOLD CROSS VALIDATION

ON DATASET CLASSIFICATION

of the results obtained from all the datasets is given in
Table I.4

A. Datasets

In order to illustrate the effectiveness of the proposed
framework, we tested on the following four datasets: the
Stanford background dataset [4], make3D dataset [18], [19],
Spain dataset, and rest of the world dataset (ROTW) from
LabelMe [20]. To further illustrate the distinctness of the
different datasets, we carried out an experiment similar to
the one mentioned in [21]. For all four datasets, we extracted
GIST features [22] and then trained a linear support vector
machine to classify each dataset. We performed 5-fold cross
validation and obtained 59.85% classification accuracy and the
confusion matrix of the four datasets are shown in table II.
As can be observed from the confusion matrix, the overlap of
the Stanford dataset with other datasets is relatively small.

B. Overview of Results

1) The Stanford Dataset: The Stanford BG dataset consists
of 715 fully annotated outdoor scene images, where each
image contains at least one foreground object and has the hori-
zon positioned within the image [4]. The standard test involves
a 5-fold cross validation, where the dataset is randomly split
into 572 training images and 143 test images for each fold.
Average pixel level accuracies over the 5 folds are reported.
Our framework outperforms all the state-of-the-art techniques
on this dataset as shown in Table III.5 Examples of labeled
images as well as the confusion matrix are shown in Figure 6
and 7, respectively.

4These results were obtained by taking the best model in the 5-fold cross
validation and applying it to the rest of the datasets. Note: while some tables
report the best performance, others report average performances, but this is
indicated in the caption.

5Kumar and Koller [5] are not included in the table as they did not report
results for a 5-fold cross validation test.
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TABLE III

RESULTS (AVERAGE ACCURACY) COMPARING GENERALIZED MEAN

FIELD (GMF) WITH OTHER INFERENCE METHODS REPORTED

IN THE LITERATURE, WHERE THE TRAINING DATA IS FROM

STANFORD BG AND TEST DATA IS FROM STANFORD BG

Fig. 6. Examples of labeled images from Stanford dataset. (images best
viewed in color).

2) The Spain Dataset: The Spain dataset was originally
collected as the training data for the benchmark dataset used
in recognizing and segmenting as many object categories as
possible. The dataset is a compilation of outdoor pictures taken
in different cities of Spain. It was annotated using the LabelMe
[20] annotation tool. We unified our labels with those from
LabelMe by renaming the major classes object, person and
cars to our generic foreground class and we also combined
Sidewalk and Road into the Road class. We renamed a total
of 141 classes and mapped them into the 8 semantic classes
as Stanford BG dataset. The label mapping is provided in the
appendix.

The dataset contained 2,920 images; after processing the
dataset and getting rid of unidentifiable images, we were left
with 2,301 images for testing. Not all images were fully
annotated for this dataset. It contains more than 1,000 fully
annotated images and about 2,000 partially annotated images.

For processing, each image in the Spain dataset was resized
so that the longer side of the image occupies 320 pixels,
where the aspect ratio of the image remains unchanged.The
turbopixel algorithm was applied to yield roughly 500 super-
pixels per image and the chosen robust features were extracted
from the superpixels. Two classification models (geometry
model and semantic region model) learned from training on
the 572 images randomly selected from the Stanford BG
(that accounted for the highest accuracy among the 5 folds)
were applied to compute the mid-level cues and to initially

classify the superpixels. The final labels were assigned during
inference and every pixel inherited the label of its parent
superpixel. Pixel-level accuracy was computed by comparing
the assigned label after inference to the label provided by
the LabelMe annotations. The accuracy we obtained on the
Spain dataset was 79.34%. Examples of labeled images and
confusion matrix are shown in Figure 8 and 7, respectively.

3) The “Rest of the World” (ROTW) Dataset: The ROTW
dataset was originally collected as the testing data counterpart
of the Spain dataset described in Section IV-B.2. It consists of
images taken from the rest of the world other than Spain so that
the dataset bias can be minimized. We use this intentionally
designed diversity of the datasets to test the generalization
power of our scene decomposition framework. ROTW was
also annotated using LabelMe, and the dataset labels and
images were unified in a similar manner as before and a total
of 135 categoried were renamed. The label mapping of this
dataset is also provided in appendix.

The dataset initially contained 1,133 images, some indoors,
close up shots of objects, and others yet in scenes not
previously seen by our training model. Unlike before, we did
not get any unidentifiable images, using the same processing
method as described for Spain. The accuracy we obtained on
the ROTW dataset (all 1,133 images) was 70.97%. Examples
of labeled images are shown in Figure 9.

4) Semantically-Augmented Make3D Dataset (Make3D):
The Make3D dataset [18], [19] contains images and depthmaps
obtained from the Make3D project. The dataset is further
extended in Liu et al. [24] for estimating depth in single
images using predicted semantic labels. These semantic classes
correspond 1-to-1 with the Stanford Background dataset.
Make3D consisted of 534 fully annotated images. The pixel-
level accuracy we obtained on this dataset was 81.27%.
Examples of labeled images are shown in Figure 10.

5) Additional Images from Multiple Datasets: In Figure 1
and 11 we show additional challenging images whose contents
were very dissimilar to any of our training images, yet the
resulting labels were still good.

V. DISCUSSION

The confusion matrices from Stanford BG and Spain dataset
are quite similar (see Figure 7), and the classes that perform
worse are water, mountain and the foreground objects. It is
not suprising that “mountain” gets the lowest accuracy since
in Stanford dataset there are only a few images that contain
mountain. The performance of foreground objects is also as
expected, since it contains a variety of classes which have
significantly different features. In addition, the foreground
objects tend to have shared features with background classes.
The horizon line seems to be a very good cue for foreground
objects, as we obseved in many images most foreground
objects are near or below the horizons. This can also be
observed from the confusion matrices – the classes that mixed
with foreground objects are primarily road and building. Road
almost always falls below the horizon and buildings typically
intersect the horizon.

Both approaches that use pairwise potentials out performs
the one that only utilizes single node potentials, which is
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Fig. 7. Labeling Spain with Stanford: confusion matrices for the Stanford BG dataset (left) and the Spain dataset (right).

TABLE IV

ILLUSTRATION OF HOW ACCURACY OF LABELING VARIES WITH CHOICE OF FEATURES

Fig. 8. Examples of labeled images from Spain dataset. (images best viewed
in color).

as expected. However, merely applying inference on both
single and pairwise potentials tends to give solutions that are
over smoothed because of the strong indications of smoothness
preservation in the pairwise term. By using our generalized
mean field, we are able to utilize larger regions to do inference.
So, on the one hand it enabled us to get smooth region labels as
before inside the combined nodes, since they all have similar
properties. On the other hand, it also allows us to capture
discontinuity across large boundries, because the combined
region is relatively large, which suppressed the pairwise term

Fig. 9. Examples of labeled images from “rest of the world” dataset. (images
best viewed in color).

so that we do not get over smoothed. The region boundries
from various datasets are quite clean (see examples in figure 6,
8 – 11), and the label is smooth inside large regions.

A. Analysis of Features

We experimentally evaluated how the choice of features
affect the accuracy obtained from again labeling a single run
of the Stanford BG dataset and present the results in Table IV.
We observe that only the large homogenous regions such as
the sky and grass (from afar) perform better with color only



ZHOU et al.: LABELING SPAIN WITH STANFORD 5369

Fig. 10. Examples of labeled images from Make3D dataset. (images best
viewed in color).

Fig. 11. Labeling examples from multiple datasets. (images best viewed in
color).

Fig. 12. Results (best-fold) of comparing generalized mean field (GMF)
with naive mean field (MF), when varying the numbers of training examples.
The training data is from Stanford BG and test data is from the three other
datasets shown in the legend.

cue than with texture only cue, since in homogenous regions
texture will not make much difference. Also, location specific
regions such as sky, road, water and building perform quite
well with location-based cues as the only set of features. As
expected, removing either texture or color significantly impacts
the performance of all the classes as well as the overall accu-
racy. As mentioned previously, the range of horizon features
are efficient for foreground objects, and from the results we
observe, it also improved the performance in several other
classes. A possible reason for the good performance of this
feature is that the relative locations among regions are stable

TABLE V

RESULTS (BEST-FOLD) OF COMPARING GENERALIZED MEAN FIELD

(GMF) WITH THE REGION-BASED METHOD [4], WHERE THE TRAINING

DATA IS FROM THE MAKE3D DATASET AND TEST DATA IS FROM THE

DATASETS ON THE LEFTMOST COLUMN

but the absolute locations might have high variations. With
the combination of all the features, the best accuracy value
is obtained and the framework outperforms all other reported
results on the same dataset.

B. Analysis of Performance

We experimentally evaluated how the number of train-
ing examples influenced the performance of scene region
decomposition by varying the number of training images
selected from the Stanford BG dataset and running the same
classification tests on the other datasets. We selected seven
different training subsets from the Stanford BG dataset, where
the first six subsets were randomly selected, with sizes varying
uniformly from 100 to 600. The last subset simply included all
715 training images from the Stanford BG dataset. We eval-
uated our proposed model as well as a mean field baseline
model for all the cases, and the results are illustrated in
Figure 12. The performance increased much slower after
200 training examples, and stabilized after 400 training exam-
ples. It is clear from these results that the proposed method
using GMF consistently outperformed its naive counterpart,
for each of the datasets. Also interesting is the fact that the
shape of the curve was quite similar for each dataset, although
GMF was consistently higher.

To further test the robustness of the GMF method, we
also evaluated the performance by training on make 3D and
testing on the other datasets. We followed the same procedure
as described in Section IV, i.e. applying 5-fold cross vali-
dation and using the single best model to test on the rest
of the datasets. It is clear from the results (see Table V)
that our method consistently performs better even across
datasets.

VI. CONCLUSION

We have presented a robust scene parsing framework
that generalizes well to diverse datasets of outdoor scenes.
We attribute this robustness to our framework, the mid-
level feature based on the location of the sky and sup-
port (or ground) planes and an improved inference method.
Also, from a segmentation-only perspective, our choice of
initial superpixels resulted in segmented regions that were
true to their original boundaries. In addition, the regional
based inference enabled us to get more accurate approxima-
tion for the probabilities of the underlying graphical model.
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As expected, the identification of the generic foreground class
whose members tended to overlap significantly with other
classes, is challenging. The corresponding average accuracies
are at <60% across the datasets.

We believe that a generalizable scene decomposition frame-
work such as the one we have presented is a significant
advance in scene understanding. However, to complete the
loop, it will be important to incorporate the problems of object
localization and categorization with scene decomposition, so
that strongly identifiable scene regions can act as priors for the
location and position of weakly identifiable objects and vice
versa. Rather than attempting to perform these two separate
tasks concurrently, it might prove more useful to perform them
iteratively, where one set of cues can enhance the existence
of the other. The horizon feature proved quite useful, hence,
going forward, it will be interesting to incorporate it into the
inference process in the CRF model.

APPENDIX

SEMANTIC LABEL MAPPING FROM LABELME

TO STANFORD BG LABELS

TABLE VI

LABEL MAPPING FOR SPAIN DATASET

TABLE VII

LABEL MAPPING FOR REST OF THE WORLD DATASET
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