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Abstract

Securing biometrics databases from being compromised is an important research challenge that must be overcome in order to support
widespread use of biometrics based authentication. In this paper we present a novel method for securing fingerprints by hashing the fin-
gerprint minutia and performing matching in the hash space. Our approach uses a family of symmetric hash functions and does not
depend on the location of the (usually unstable) singular points (core and delta) as is the case with other methods described in the lit-
erature. It also does not assume a pre-alignment between the test and the stored fingerprint templates. We argue that these assumptions,
which are often made, are unrealistic given that fingerprints are very often only partially captured by the commercially available sensors.
The Equal Error Rate (EER) achieved by our system is 3%. We also present the performance analysis of a hybrid system that has an EER
of 1.96% which reflects almost no drop in performance when compared to straight matching with no security enhancements. The hybrid
system involves matching using our secure algorithm but the final scoring reverts to that used by a straight matching system.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Securing a biometric template is a critical step in the suc-
cessful implementation of biometrics based authentication
systems. Typically, biometric templates are stored unpro-
tected in a central database. Even if the stored templates
are encrypted, matching continues to be performed using
decrypted templates where the decryption process itself
can be compromised. An analogy can be made with pass-
word based authentication systems which come under
eavesdropping attacks (e.g., man-in-the-middle) during
transfer over a network (Schneier, 1996). To prevent such
attacks, plain-text passwords are hashed, and only the hash
values are stored in the database and transmitted across
networks.

A hash function H is a transformation that takes an
input m and returns a value h (called the hash value);
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h = H(m). Hash function H is said to be a one-way func-
tion if it is hard to invert (Schneier, 1996), that is, given
a hash value h, it is computationally infeasible to find some
input x such that H(x) = h.

We have developed a method for biometric data which
is similar to password encryption and hashing and involves
the following steps. Biometric matching is performed using
hashed features instead of the original template (Fig. 1).
Fingerprints are obtained using an online scanner. The
minutia features are located and hashes of the minutia sub-
sets are constructed. These operations of finding minutiae
and hashes can potentially be incorporated into the scanner
itself, so that only the hashes will need to be transmitted
and stored in the database. During verification, new hash
values are produced by the scanner and are matched with
those stored in the database. Matching can be performed
either on the client side or on the server side.

In this paper we extend our earlier work (Tulyakov
et al., 2005) by introducing additional methods of securing
and personalizing the hash for the fingerprint data.
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Fig. 1. Securing fingerprint information.
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2. Challenges

The hash value for text passwords completely changes
even if a single character in a password is changed. This
is due to a desirable property of the hash algorithm known
as the avalanche effect. Hashing is still feasible in case of
passwords because the authentication is an all-or-none par-
adigm and access is granted only if the entire password that
is offered matches correctly. Also, in password protected
systems, in case the password database is compromised, a
new set of passwords can be set up. Biometric systems,
on the other hand, are probabilistic. Authentication is
based on scores that can range between 0% and 100%. In
case the biometric data is hashed, even a slight change in
the acquisition of the biometric (a very likely scenario)
can lead to a totally different hash value. Thus, it may
not match the original within the same matching threshold
as that for the straight unhashed scenario. Therefore, the
hash-based system must adhere to the following additional
properties:

• similar fingerprints should have similar hash values,
• different fingerprints should not have similar hashes,
• rotation and translation of the original template should

not have a big impact on hash values,
• partial fingerprints (with missing core and delta) should

be matched if sufficient minutiae are present.

3. Previous work

The situation we are facing here is analogous to a pass-
word based authentication system which authenticates
even if the password provided is ‘‘almost the same’’.
Error-correcting codes (Peterson and Weldon, 1972) have
been successfully utilized in such situations. Davida et al.
(1998) describe an algorithm where error-correcting digits
are generated from the biometric data and stored in the
database during registration. During the authenticating
stage, biometric data is combined with the stored error-cor-
recting digits and correction is performed. The amount of
correction required is a measure of the authentication con-
fidence. This algorithm was later modified as a fuzzy com-
mitment scheme in the work of Juels and Wattenberg
(1999). Kuan et al. (2005) presented a slightly different
method for extracting cryptographic keys from dynamic
handwritten signatures. An approach for face templates
is presented by Kevenaar et al. (2005) in which they gener-
ate binary feature vectors from biometric face data and
gain security by using helper data introduced into this bit
sequence.

However, none of the above mentioned approaches can
be directly extended to fingerprints where the minutia posi-
tions themselves are features. This presents additional chal-
lenges for designing hashes as minutia sets of two
fingerprints, in most instances are not exactly the same. It
is also impossible to introduce an order in the minutia set,
and global transformation parameters are usually present
between corresponding minutiae. Error-correcting codes
require that the original sequence be ordered in some fash-
ion, so as to locate and then correct the errors in a modified
sequence. The fuzzy vault algorithm (Juels and Sudan,
2002) improves upon the fuzzy commitment scheme in
addressing these challenges. The security of the algorithm
relies on the introduction of chaff points (false minutiae).
An attacker must find a subset of points intersecting with
the non-chaff point set. Thus, more chaff points provide bet-
ter security, but reduce the vault unlocking performance.

The application of the fuzzy vault to fingerprint identifi-
cation appears in the work of Clancy et al. (2003). It shows
realistic expectations on the numbers of chaff points and
associated attack complexity. The algorithm uses the
assumption that fingerprints are aligned, and correspond-
ing minutiae have similar coordinates. Uludag et al.
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(2005) propose a fuzzy vault scheme by adding extra chaff
points and securing the template by a standard 128-bit
AES algorithm. However, the method still requires pre-
aligning the test and stored fingerprint and achieves FAR
of about 20% on a test set of 100 fingerprints.

Linnartz and Tuyls (2003) and Tuyls et al. (2005) pro-
pose a technique that assumes complete alignment of tem-
plate and test biometric data in addition to assuming
minimal effect of noise on the securing functions. Soutar
et al. (1999) construct a special filter in the Fourier space
to encode key data. The data can be retrieved only by pre-
senting a similar fingerprint image to the decoder. The
matching procedure is based on correlation, thus transla-
tions of images are possible but not rotations. More
recently, Uludag and Jain (2006) presented an advancement
of the earlier algorithm with a genuine accept rate of about
72%. However, the alignment is highly prone to error, and
does not work on poor quality or partial images. Ratha
et al. (2007) in a recent work describe surface folding trans-
formation functions that can work with existing point-
based matchers. However, they require precise locations
of the singular points (core and delta) for the alignment
of the fingerprints in order to guarantee repeatability of
the transformations. Teoh et al. (2004) present a two-factor
authentication system with high accuracies, but the algo-
rithm also requires the precise location of the core for fea-
ture extraction. This prevents compatibility of such
systems with existing databases and fingerprint scanners.

A comprehensive survey of previous work in securing
biometric data can be found in (Uludag et al., 2004). How-
ever all the reported methods are primarily limited by
Fig. 2. Left: Minutia angles at a ridge and bifurcation. Right: Secondary
requirements of pre-alignment or location of singular
points. Our objective is to overcome this limitation.

4. Motivation

The main difficulty in producing hash functions for fin-
gerprint minutiae is the inability to normalize the fingerprint
data. If the fingerprint data is not normalized, then values of
the hashing functions are destined to be orientation/posi-
tion- dependent. The way to overcome this difficulty is to
have hash functions as well as the matching algorithm deal
with transformations of the fingerprint data. This is pre-
cisely the approach we have developed in this paper.

4.1. Minutiae based matching

In fingerprint based biometric authentication systems,
minutiae based matching has become a de facto standard.
A fingerprint is comprised of a series of ridges and furrows
on the surface of the finger. The uniqueness of a fingerprint
is determined by analyzing the contours as well as the
minutiae points which are local ridge characteristics that
occur at either a ridge bifurcation or a ridge ending
(ANSI/INCITS 378-2004,) (Fig. 2, left). Correlation based
techniques are usually inefficient and at times infeasible
because of their high sensitivity to translation and rotation.

The task of fingerprint matching requires that the two
prints be aligned and the number of matching minutiae
points determines the goodness of match. In our work we
use ideas similar to Germain et al. (1997) and Jea et al.
(2004) to combine the results of ‘localized matchings’ into
features based on the minutia mi and its nearest neighbors n0 and n1.
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the fingerprint recognition algorithm to avoid global align-
ment. Localized matching consists of matching minutia
triplets using such features as angles and distances between
minutia points. For each minutia feature vector of length 3
(x,y,h) and its two nearest neighbors, a secondary feature
vector sı = {rı0, rı1,hı0,hı1,/ı} is generated based on the
Euclidean distances and orientation difference between
the central minutia and its nearest neighbors (Fig. 2, right).
For localized matching, we only keep track of limited
information about the matched neighborhoods, so that
the minutia positions cannot be restored from the trans-
formed data.

Global matching is essentially about finding a cluster of
localized matchings with similar rotation (r) and transfor-
mation (t) parameters. Unlike the fingerprint vault algo-
rithm (Clancy et al., 2003) our algorithm performs
hashing of not only the enrolled fingerprint, but of the test
fingerprint as well. Thus hashing can be incorporated into
the scanner itself, and the original fingerprint data never
needs to be transmitted or stored in a database.

4.2. Symmetric hash functions

A small change in the input (missing information, noise
or a change in the order of the input etc.) can cause a sig-
nificant change in the hash value. A certain class of hash
functions can, however, be formulated that are invariant
to the order in which the input pattern is presented to the
hash function. Such hash functions are known as order-
independent or symmetric hash functions. Consider an
input sequence X = x1x2x3. . .xn and the following two hash
functions (examples)

HðX Þ ¼ k1x1 þ k2x2 þ � � � þ knxn; k1 6¼ k2 � � � 6¼ kn ð1Þ
Hm

symðX Þ ¼ xm
1 þ xm

2 þ � � � þ xm
n ð2Þ

If the order of the input is changed to X = x2x3xn. . .x1, the
first function yields a different hash value where as the sec-
ond remains unchanged. We can generate similar hash
functions (like (2)) that are symmetric. Moreover, arbitrary
combinations of more than one hash function yield new
hash functions. Thus, we can have a whole family of
symmetric hash functions by combining the elementary
symmetric functions of (2): H sym;f ðX Þ0 ¼ f ðH 1

symðX Þ; . . . ;
Hn

symðX ÞÞ. This property of symmetric hash functions can
be used for hashing the fingerprint minutiae (or any set
of unordered points).
Fig. 3. Minutiae as represented in the complex plane. f
5. Hash functions of minutia points

We represent minutia points as complex numbers {ci}.
We assume that two fingerprints of the same finger can
have different position, rotation and scale, coming from
(possibly) different scanners and different positioning of
the finger on the scanner. The transformation of one finger-
print to another can be described by the complex function
f(z) = rz + t (Fig. 3). z represents the minutia point ci as
xi + yi located at coordinates (xi,yi). r and t represent the
scalar rotation and translation parameters of the accidental
shift of points under the registration and authentication
scans. In our approach we construct hash functions and
the corresponding matching algorithm so that the acciden-
tal shifting is taken into account. Additionally, we do not
rely on a specific order of minutiae because we want our
hash functions to be independent of this order. We con-
sider symmetric complex functions as our hash functions.

Specifically, given n minutia points {c1,c2 ,. . . ,cn} we can
construct the following m symmetric hash functions

h1ðc1; c2; . . . ; cnÞ ¼ c1 þ c2 þ � � � þ cn

h2ðc1; c2; . . . ; cnÞ ¼ c2
1 þ c2

2 þ � � � þ c2
n

. . .

hmðc1; c2; . . . ; cnÞ ¼ cm
1 þ cm

2 þ � � � þ cm
n

ð3Þ

If the number of hash functions (m) is less than the number
of minutia points (n) participating in the construction of
the hash function, then it is not possible to restore the ori-
ginal minutia positions given the hash values. Suppose an-
other image of the fingerprint is obtained using the above
described transformation f(z) = rz + t. Locations of the
corresponding minutia points are c0i ¼ f ðciÞ ¼ rci þ t. Hash
functions of the transformed minutiae can be rewritten as

h1ðc01;c02; . . . ;c0nÞ
¼ c01þ c02þ � � �þ c0n
¼ ðrc1þ tÞþ ðrc2þ tÞþ � � �þ ðrcnþ tÞ
¼ rðc1þ c2þ �� �þ cnÞþ nt
¼ rh1ðc1;c2; . . . ;cnÞþ nt

h2ðc01;c02; . . . ;c0nÞ
¼ c021 þ c022 þ � � �þ c02n
¼ ðrc1þ tÞ2þðrc2þ tÞ2þ �� �þ ðrcnþ tÞ2

¼ r2ðc2
1þ c2

2þ �� �þ c2
nÞþ 2rtðc1þ c2þ �� �þ cnÞþ nt2

¼ r2h2ðc1;c2; . . . ;cnÞþ 2rh1ðc1;c2; . . . ;cnÞþ nt2

. . .

ð4Þ
represents the accidental shifting of minutia points.
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Let us denote the hash values of the minutia set of one fin-
gerprint as hi = hi(c1,c2, . . . ,cn) and the hash values of the
corresponding minutia set of another fingerprint as
h0i ¼ hiðc01; c02; . . . ; c0nÞ. Eq. (4) now becomes

h01 ¼ rh1 þ nt

h02 ¼ r2h2 þ 2rth1 þ nt2

h03 ¼ r3h3 þ 3r2th2 þ 3rt2h1 þ nt3

. . .

ð5Þ

Eq. (5) has two unknown variables r and t. If we take into
account the errors introduced during the fingerprint scan-
ning and minutia search, the relation between the hash val-
ues of the enrolled fingerprint {h1, . . . ,hm} and the hash
values of the test fingerprint fh01; . . . ; h0mg can be repre-
sented as

h0i ¼ fiðr; t; h1; . . . ; hnÞ þ �i ð6Þ

Matching between the hash values of the enrolled finger-
print {h1, . . . ,hm} and the hash values of the test fingerprint
fh01; . . . ; h0mg amounts to finding r and t that minimize the
errors (�i). During implementation we have considered
r = 0.78
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6. Global fingerprint matching using hash functions

It turns out that using hash functions with respect to the
minutia set of the whole fingerprint is impractical. Even the
small difference in minutia sets of two prints of the same
finger produce significant differences in hash values. Fur-
ther, the higher order hash values tend to change in a large
measure with even small change in positions of the minutia
points. Thus, this is contrary to the desirable properties we
motivated in Section 2.

To overcome these difficulties we perform matching only
on localized sets of minutia. Global matching of two finger-
prints is taken as a collection of the localized matchings
with similar transformation parameters r and t. As in the
base fingerprint matcher (Jea et al., 2004), the localized
set is determined by a particular minutia and a few of its
neighbors. The hashes are calculated for each localized
set. The total hash data extracted consists of a set of hashes
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{hi,1, . . . ,hi,m}, i = 1, . . . ,k, where k is the total number of
localized minutia sets.

During matching of two hash sets we first perform a
match of all the localized sets in one fingerprint with all
the localized sets in another fingerprint. The matches with
the highest confidences are retained. Assuming that a par-
ticular match is correct (iteratively), we find how many
other matches have similar transformation parameters.
Fig. 4 describes the exhaustive voting procedure for a pair
of fingerprints. We observe that most hypotheses vote for
the rotation of 0.7865� and this is selected as the rotation
parameter r. Similarly, the translation parameter t is estab-
lished. The match score is a composite of the number of
close matches and the confidences of those matches.

7. Experimental analysis

We tested our system on the 2002 Fingerprint Verifica-
tion Competition DB1 (Second International Fingerprint,
2002) database. The dataset consists of 110 different fingers
and 8 impressions for each finger. There are a total of 880
fingerprints (388 pixels by 374 pixels) at 500 dpi with vary-
ing image quality. In accordance to the protocols of
FVC2002, we used only the first 100 individuals to evaluate
the FAR (False Accept Rate) and FRR (False Reject
Rate). FRR is computed based on the total number of gen-
uine tests (compare each impression with the seven others
for all individuals) and equals ð8�7Þ

2
� 100 ¼ 2800. FAR is

computed based on comparing the first impression of each
individual with the first of the others and thus the total
number of impostor tests equals ð100�99Þ

2
¼ 4950.

We have conducted experiments with different configu-
rations, using different number of minutia points (n) and
hashing functions (m). The following configurations were
considered:

(1) n = 2, m = 1. For each minutia point we find its near-
est neighbor, and the hash function hðc1; c2Þ ¼ c1þc2

2
.

(2) n = 3, m = 1. For each minutia point we find two
nearest neighbors and the hash function
hðc1; c2; c3Þ ¼ c1þc2þc3

3
.

(3) n = 3, m = 2. For each minutia point we find the
three nearest neighbors, and for each minutia triplet
including the original minutia point we construct
two hash functions hmðc1; c2; . . . ; cnÞ ¼ cm

1 þ cm
2 þ � � �

þcm
n , where m = 1, 2.

Let us consider configuration 3 in detail. Given a minu-
tia triplet represented by complex numbers (c1,c2,c3), we
find the center of the triangle formed by this triplet. The
center is represented by the complex number T ¼ c1þc2þc3

3
.

Such triangle centers of all minutia triplets are used for
hashing. The template and the test fingerprint are aligned
to calculate the matching scores. Thus, if a fingerprint is
represented in the minutia space by a set of minutia points
{m1,m2, . . . ,mn}, this operation maps it onto a new space
where it is now represented by a set of triangle centers
{T1,T2, . . . ,Tk}. The task of reversing this hash function
would involve finding the actual minutia point locations
given these triangle centers. We compared the FAR and
FRR performance with the fingerprint matching algorithm
developed in (Jea et al., 2004) and using the same set of fin-
gerprints with identically extracted minutiae points. Also,
since in configurations (1) and (2) we simply deal with a
new set of minutia points, we used the matching algorithm
of Jea et al. (2004).

We achieved an equal error rate (EER, point where
FAR = FRR) of 3% compared to 1.7% for straight match-
ing in the minutia space. The ROC characteristics of the
straight matching and the different configurations of our
algorithm are shown in Fig. 5. The accuracy is slightly
lower than the baseline system with the trade-off benefit
of securing the fingerprint data against (hacker) inversion.

8. Security of the algorithm

The main purpose of the proposed algorithm is to pro-
tect the original fingerprint and minutiae locations from
an attacker. Let us see if it is possible to reconstruct the
minutia positions given the stored hash values. Since the
number of hash values for each local minutia set is less than
the number of these minutiae, it is not possible to get the
locations using only the information of any one local set.
Although, it may seem possible to construct a (big) system
of equations involving all the hashes. It is not known which
minutia participated in the creation of a particular hash
value. Thus the non-invertibility is still maintained.

The problem is illustrated in Fig. 6. Two triplet centers
are formed from 4, 5 and 6 minutia points. Thus during
construction of an equation system for reverse engineering
the minutia positions, the attacker would face the problem
of deciding the number of participating minutiae, in addi-
tion to matching the minutia to the triplet centers.

Hill-climbing type attacks (Uludag and Jain, 2004) will
have a difficult time to make a match since the varying
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minutia position would effect some triplets, thus influenc-
ing the matching score in a more complex way. Further-
more, even if an attack succeeds and a match is found,
the resulting minutiae locations will be different from the
original. In such a situation, change of hashing algorithm
will make the reconstructed fingerprint unmatchable.
Brute-force search on all the nearest neighbors of a triangle
center for the above method may be computationally feasi-
ble, however, using higher order hashes instead of simply
neighboring minutiae can render such attacks ineffective.
If the minutia positions are floating point and not integers,
then once again the brute-force method becomes computa-
tionally intractable. The float positions of minutia could be
estimated by the minutia extraction algorithm, or in case of
integer positions, these positions might be randomly per-
turbed. Another method might be to reduce the number
of information bits in the hash value with respect to the
actual fingerprint template thus making it infeasible to do
a brute-force attack even on the whole fingerprint image.
Whereas these methods only utilize the fingerprint minu-
tiae, in the following sections we present methods for using
additional information (keys, personal hashes etc.) that can
harden the fingerprint hash.

Ratha et al. (2001) describe how the strength of a finger-
print with K discrete minutia positions and d associated
directions can be associated with log2(Kd) bits of informa-
tion and have a brute-force strength of about 70–80 bits.
Our approach actually increases the bit-strength as the
number of points increases using the triplet centers. Thus,
it has a security of the same order as that of a plain finger-
print to a brute-force attack. However, the invertibility of
the hash of the actual fingerprint in our algorithm is
intractable.
9. Cancelable biometric

Our algorithm for the hashing of fingerprint templates
eliminates the possibility of an attacker learning the origi-
nal minutia positions. Although we consider it an extre-
mely difficult task, an adversary might construct an
artificial template producing similar hash values, but hav-
ing different minutia positions. Thus we need to expand
our algorithm to make the fingerprint hashes cancelable.
This can be achieved by re-enrolling people using a differ-
ent set of hash functions.

In order to enhance the security, systems often imple-
ment a two-level authentication where a user in addition
to the biometric provides a key which is stored on a card
or enters it on a keypad. Also, this key can be reissued in
case of a successful attack. In this section we present ways
to increase the security of the hashing method by an expo-
nential factor. This can be done by embedding a secret key
into the hashing process. The key can be based on a token
that the user carries or a password that the user remembers.
It may even be based on another biometric modality, thus
making the key personal. To achieve a cancelable biometric
algorithm we need to provide a way to automatically con-
struct and use randomly generated hash functions. The pre-
sented set of hash functions is an ‘algebraic basis’ in the set
of polynomial symmetric functions. Thus, we are able to
express hash functions of transformed minutia set through
the original set of symmetric functions. This is a clue to
constructing new hash functions of the same type. We
can essentially take an arbitrary algebraic basis of symmet-
ric polynomials of degree less than or equal to m,
{s1, . . . , sm} as our hash functions. Then the hash functions
of the transformed minutiae, si(rc1 + t, . . . , rcn + t), will still
be symmetric functions of the same degree with respect to
the variables c1, . . . ,cn. Thus, hashes of transformed minu-
tia can be expressed using the original hashes, s0i ¼ siðrc1þ
t; . . . ; rcn þ tÞ ¼ F iðr; t; s1; . . . ; smÞ for some polynomial
functions Fi. These equations will allow matching localized
minutia sets, and finding corresponding transformation
parameters.

9.1. Two-factor authentication

Let us assume that we compute a hash value for each
triplet of minutiae (c1,c2,c3). For each such triplet, we
can choose from one of several symmetric hash functions
such as

h1ðc1; c2; c3Þ ¼ ðc1 þ c2 þ c3Þ
h2ðc1; c2; c3Þ ¼ ðc1c2 þ c2c3 þ c1c3Þ
h3ðc1; c2; c3Þ ¼ c1c2c3

h4ðc1; c2; c3Þ ¼ ðc1 � c2Þ2 þ ðc2 � c3Þ2 þ ðc1 � c3Þ2; etc:

Any linear combination of these functions will also yield a
symmetric hash function. Thus for any triplet, we have sev-
eral functions h1,h2 . . .hk from which we can derive the
transformation. Instead of choosing the hash function in
a deterministic way, the complexity of the transformation
and hence the resulting security can be enhanced if we
could choose several of these hash functions simulta-
neously in a random order. Thus, for each triplet
T1,T2 . . .TN we can associate a corresponding hash func-
tion H1,H2 . . .HN. The association can be based on a secret
key K. The key specifies the association between the triplet
T and the corresponding hash H as shown in Fig. 7.
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However, in order to successfully verify the individual
during authentication, the resulting triplets T 01; T

0
2 must

also be associated with identical hash functions. The prob-
lem occurs because we do not know the association
between T1, T 01 before hand. To overcome this problem,
each triangle or triplet T can be represented parametrically
by specifying three parameters such as – two sides and one
angle, or one side and two angles etc. Let us represent these
by p1, p2, p3 in general. Thus each possible triangle now
exists as a point in the parametric space (Fig. 8).

All triangles with similar geometries lie close together in
this parametric space. Thus, given any triplet T we deter-
mine the point P where it lies in the parametric space.
Any triplet T 0 that is geometrically similar will lie in close
proximity of P as shown by the circles in Fig. 8. Further
we divide the parameter space into non-overlapping cells
(Fig. 9). The cells are shown in 2D for simplicity. Each cell
is assigned a specific hash function.
Fig. 8. Triangles as points in the parameter space.

Fig. 9. Associating the hash functions with cells in the parameter space.
The association between the hash function and the cell
are now contained in the secret key. Let two instances of
the key be H2H4H8H1H3H1 and H3H2H7H3H1H6. The
length of the key is determined by how we subdivide the tri-
angle space into cells. Let us assume that there are c such
cells in all. This arrangement solves the original problem
of triplet association. If a triplet T exists in the reference
fingerprint and appears at T 0 (T with slight distortion) in
another instance of the print, it falls in close proximity of
the original triplet in the triangle space. Due to the spatial
proximity it also falls in the same cell as the original triplet
T and hence gets assigned the same hash function as before
due to quantization of the triangle space. The proposed
solution increases the security of the hashing function by
rendering brute-force attacks infeasible.

9.2. Personalizing and reissuing

While the number of symmetric functions possible for
each triplet is clearly infinite, it is not clear as to how many
of these functions can be chosen such that the transforma-
tion is still meaningful. Let us assume it is some finite (per-
haps large) number N. For somebody who has the original
biometric, the task of circumventing the system reduces to
trying out all of the N hash functions. By introducing the
key K, there are N possible hash functions for each cell
in the triangle space. Thus the total number of possible
hash combinations is now N · N · N. . .(c times) = Nc.
Thus, by introducing the secret key K, we are exponentially
multiplying the total number of possibilities of hash func-
tions and increasing the computational complexity of a
brute-force attack by the same amount. This key can be
based on another biometric modality such as face or iris
or its convolution by some signal. In case of compromise
of the database, the keys can be reissued and a different
set of hash functions can be chosen as shown earlier, thus
ensuring that the biometric system is cancelable.

10. Performance analysis

The slight loss in the accuracy of the secure system as
compared to the straight version can be attributed to fac-
tors such as reduction in the number of points being
matched. However, the total number of hashed values is
not reduced in the same proportion since the same minutia
can participate in the production of more than one triplet
as shown in Fig. 6. Thus, total size of the stored hash val-
ues can be even larger than the size of the original finger-
print template. The decrease in the accuracy might also
have been caused by the loss in information when keeping
a reduced number of variables based on the minutia trip-
lets. For every three neighboring minutia points we have
reduced the number of variables to 4 (2 complex numbers)
instead of the original 6. For example, the average number
of minutia matched for a genuine match in the baseline ver-
sion was observed to be about 25.9. In the secure version
the average number of triplet centers matched for genuine



Table 1
Comparison of the plain, secure and hybrid verification systems

Plain Secure Hybrid

Average points matched 25.90 57.50 24.55
EER% 1.7 3.0 1.96
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tests was 57.5. There can be additional reasons for the
slight performance drop, such as difficulty in matching
localized hashed values.

In order to evaluate the performance of the secure
matching algorithm vis-a-vis the straight matching, we per-
formed experiments where the transformation parameters r
and t were determined by our algorithm. These parameters
were then used as the transformation parameters for the
straight version. For this hybrid setup, an EER of 1.96%
was achieved (Fig. 10).

In the region of interest (i.e. FAR < 10�2), the secure
system has a lower (better) FRR. Hence, although the
secure system is doing better in terms of FAR near the
point of equal error, it is doing slightly worse in terms of
FRR. Fig. 11 shows an example where the secure system
falsely rejects a user that the straight system correctly
grants access. As we have observed, the difference in the
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Fig. 10. Comparing the ROC curves of the plain, secure and hybrid
systems.

Fig. 11. An example genuine matching
number of overlapping minutia between the two prints is
large and this is magnified when the fingerprint is mapped
on to the hashed space (e.g. the triangle centers). Thus, the
straight matching system is able to match more minutia but
our algorithm matches fewer triangle centers as many of
them overlap. Thus, we are more conservative in the
matching leading to a lower FAR but incur a slightly
higher FRR. Table 1 gives a comparison between the three
modes. The comparable number of minutia matched in the
straight version and the hybrid system suggest that indeed
the secure system performs as well in terms of finding the
transformation parameters and matching the minutia.

11. Conclusions

We have presented a method to secure fingerprint tem-
plates by using innovative symmetric hash functions. Such
symmetric functions can be utilized for any biometric
modality where the features are unordered as is the case
with fingerprint minutia.

We have described the successful implementation of a
secure authentication system with performance comparable
to straight matching systems. We have also presented
methods to cancel and reissue the biometric and to person-
alize the hash values based on keys that could be poten-
tially derived from other biometric modalities. Our
method does not make any assumptions regarding the
pre-alignment of fingerprints or about the ordering of
minutiae points based on locations of core and delta
points. Thus, in contrast to all the previous methods
described in the literature, our method is the most general,
pair falsely rejected by our system.
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and in case of partial fingerprints where locations of core
and delta points are often unavailable, it is the only practi-
cal method.

A conceptual model that addresses variability of feature
representations, ordering of features, and the need for
localization must be systematically investigated for all bio-
metric modalities to achieve security, cancellability, and
privacy. Whereas in the case of fingerprint modality, minu-
tiae based feature representation is a (NIST) standard
which is widely accepted, other biometric modalities do
not enjoy a single standard representation of features. Thus
the method described in this paper does not readily scale to
other modalities.

Our method is generalizable to biometric modalities that
use locations of certain image artefacts as primary features.
For example, online signature matching algorithms often
use the sequence of (x,y) coordinate locations as a function
of time as features. Hash functions similar to ones con-
structed with minutia locations can be constructed for
pen trajectory locations as well. The challenge will be the
spatial localization of groups of features given the wide
variability in the dimensions of signatures across people.
Also, the order of the points within a local area in a signa-
ture carry vital information which may need to be encoded.

Voice print matching, like signature, offers the temporal
dimension by providing a natural sequencing of features.
However, the features themselves are more complex than
simple location of certain attributes. We will investigate
approaches suitable for non-behavioral biometrics as well
where the temporal dimension does not exist.
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