CSE 473/573 RANSAC & Least Squares

Devansh Arpit

Mathematical Models

• Compact Understanding of the World

Mathematical Models - Example

• Face Recognition with varying expressions

• Too Easy...

Mathematical Models

• Face Recognition with varying expressions

- Random Sample Consensus
- Used for Parametric Matching/Model Fitting
- Applications:

Line Fitting

- Fit the best possible Line to these points
- Brute Force Search 2^N possibilities!!!
- Not Feasible
- Better Strategy?

How RANSAC Works

• Random Search – Much Faster!!!

- •
- Iteration 5

Why RANSAC Works?

Inliers vs Outliers

Why RANSAC Works?

- Inliers vs Outliers
- P(selecting outliers) ${}^{17}C_2/{}^{27}C_2 + {}^{17}C_1{}^{10}C_1/{}^{27}C_2 = 0.48$
- After 5 iterations...
- P(selecting outliers) = (0.48)⁵ = 0.026

Why RANSAC Works?

- In general:
- $p = 1 (1 w^n)^k$

Where,

- p = probability for selecting inliers
- w = ratio of inliers to total #points
- n = minimum #points required (for line = 2, circle =3)
- k = #iterations

RANSAC Algorithms

Determine:

n—the smallest number of points required (e.g., for lines, n = 2, for circles, n = 3) *k*—the number of iterations required t—the threshold used to identify a point that fits well *d*—the number of nearby points required to assert a model fits well Until k iterations have occurred Draw a sample of n points from the data uniformly and at random Fit to that set of *n* points For each data point outside the sample Test the distance from the point to the structure against t; if the distance from the point to the structure is less than t, the point is close end If there are d or more points close to the structure then there is a good fit. Refit the structure using all these points. Add the result to a collection of good fits. end Use the best fit from this collection, using the fitting error as a criterion

Algorithm 10.4: RANSAC: Fitting Structures Using Random Sample Consensus.

II. Least Squares

• Fitting Curves/Learning Data Manifolds

Fitting Quadratic Curve

-2

Learning Manifolds

Line Fitting

- Goal: Find a line that best explains the observed data
- Target: y_i
- Data: x_i
- Line parameter: w,b
- Line Model:

 $y_i = w x_i + b$

Fitting Line

Line Fitting

• Line Model:

 $y_i = w x_i + b$

- Too many samples!
- Minimize error: $\min_{w,b} \sum_{i=1}^{N} (y_i - w x_i + b)^2$

Fitting Line

#Samples(m) vs #Model-Parameters(n)

- Case 1 (m=n): Unique Solution
- w=X\y
- No least square requires

#Samples(m) vs #Model-Parameters(n)

- Case 2 (m>n): Over-determined system of equations
- No Solution exists!
- Hence, we minimize error (fitting)

 $\mathbf{y} \in \mathbb{R}^m \quad \mathbf{x} \in \mathbb{R}^{m \times n} \quad \mathbf{w} \in \mathbb{R}^n$

#Samples(m) vs #Model-Parameters(n)

• Case 3 (m<n): Under-determined system of equations

